Unit 19 Reed-Muller Canonical Form

e A function is in the Reed-Muller canonical form when it is expressed
as an eXclusive-OR of the products of uncomplemented variables.

e Conversion from Sum-of-Products to Reed-Muller form is done by re-
placing the complemented terms in the SOP using A=1® A

A point in three dimensional space can be specified in the Cartesian co-
ordinate system, (x,y, z). In some circumstances, it may be better to specify
the point in other coordinate systems such as the spherical coordinate sys-
tem, (r,0, ), or the cylindrical coordinate system, (r,0,z). It is still the
same point but just specified relative to a different frame of reference. The
characteristics of the axes of each of these systems is that the axes are or-
thogonal, that is a movement along one axis does not change the coordinates
on the other axes. There are also various formulae for converting from one
coordinate system to another.

In a similar way it is possible to specify the coordinates of a logical func-
tion or state in a Boolean AND/OR form. The same logical function can
also be specified in other logic coordinate systems. One such system is the
AND/XOR system and this system has advantages for certain purposes.
There are also algorithms for converting from the AND/OR system to the
AND/XOR system. In this Unit and Unit 20 we will examine the advantages
of the AND/XOR system and the associated conversion and logic minimiza-
tion algorithms. It must be pointed out that theoretical work is continuing
on the properties of this system at the present time so that these units only
cover some of the results and that there may be significant developments in
the future which are not mentioned here.
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In performing Boolean algebraic operations using the eXclusive-OR op-
erator, @, the following rules apply:

060 = 0
11 = 0
01 = 1
ApA =0
AgA =1
1A = A

A+B = A®B®AB=A® AB=B® BA
ABa&C) = AB@® AC

We have seen in earlier units how a Boolean function can be expressed
as a sum of products using the AND/OR logic gate array. The function
can then be described very succinctly using the minterm formulation. For
instance, if we have a Boolean Sum-of-Products form of the function:

f(ABCD) = ABCD + ABCD + ABCD + ABCD
then this can be put into the minterm form as:
f(ABCD) =¥m(5,7,10,15)

The difficulty about this SOP form is that each of the variables A, B, C, D
can appear in both the complemented form and also in the uncomplemented
form so that there are effectively twice the number of primary input variables
in the expression.

If we remember that only one of the AND terms can be true at any time,
that is the minterms are mutually exclusive, then only one of the 2" rows of
the truth table can hold at one time. Therefore it is possible to rewrite this
function using eXclusive-OR instead of OR operators to obtain:

f(ABCD) = ABCD @ ABCD & ABCD & ABCD

In our example we still have a possible 2 x n = 8 distinct inputs but the
number can be reduced by using the identity:

A=10A
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so that all of the complemented terms can be replaced by uncomplemented
terms to give:

f(ABCD) = ABCD & ABCD & ABCD @ ABCD
= (1®AB(1&C)D
®(1® A)BCD
®A(l® B)C(1 @ D)
®ABCD
= BD@® BCD® ABD ® ABCD
®BCD ® ABCD
®AC & ACD @ ABC & ABCD
®ABCD
= AC® BD® ABC ® ABD & ACD ® BCD & BCD
®ABCD & ABCD & ABCD ® ABCD
= AC®BD® ABC & ABD @& ACD
®(1®1)BCD® (1®1&1®1)ABCD
= AC®BD® ABC ® ABD & ACD &0

This AND/XOR form of the function is now said to be in Reed-Muller
canonical form. Note that while the function is in either the AND/OR
Boolean form or the equivalent minterm list form each of the n inputs appears
in each of the AND terms of the expression. However, when the function is
put into the Reed-Muller form not all of the inputs appear explicitly in all
of the terms of the Reed-Muller canonical form and also none of the terms
are in the complemented form (A).

The equivalence of these two forms (the SOP form and the R-M form)
for this example can be checked using a QuickBasic program such as:

100 INPUT a, b, c, d

a=-a:b=-b:c=-c:d=-d

REM logic 1 is stored as -1 in QuickBasic

z = ((NOT a) AND b AND (NOT c) AND d) XOR ((NOT a) AND b
AND ¢ AND d) XOR (a AND (NOT b) AND c¢ AND (NOT d))
XOR (a AND b AND c AND d)

p = (a AND c) XOR (b AND d) XOR (a AND b AND c) XOR
(a AND b AND d) XOR (a AND ¢ AND d) XOR O

PRINT z, p

GOTO 100
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The reverse problem, that of going from a Reed-Muller form to a Boolean
AND/OR form which is suitable for specification in minterm form, is accom-
plished, in principle, by remembering that the minterm form is a canoni-
cal form in which all of the variables, whether complemented or uncomple-
mented, appear in each of the terms. Once the expression is in this canonical
form, the XOR, &, can be replaced by the OR, +, in the expression since
the canonical terms are mutually exclusive. The basis of the process is that
in general X @ X = 0 so that such duplicated terms can be inserted without
altering the function. The term expansion process is best illustrated by the
following example conversion:

f(AB) = A@B
= A9AB® AB9® B
= A(l®B)@ B(1® A)
= AB@® BA
= AB® AB
= AB+ AB
= ¥m(L,2)

In order to generalize the conversion process from the Boolean AND/OR,
form to the Reed-Muller form we first assign coefficients a; and ¢, which take
the values 0 or 1 and where the coefficients combine using mod(2) arithmetic
rules,ie. 0+0=0,0+1=1,14+0=1and 14+ 1 =0. Then a function of
one variable, A, can be written:

f(A) = aA+aA
= AP a A
= (1A daA
= a9 D ayADaA
= ay® (ap+ar)A

= P cA
where ¢cg = aqg
and g = a9+ w

or in matrix form €0 = 1o . %o
Cl ]. 1 a/l
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For the two variable function:

f(AB) = CL()E + a1ZB + CLQAE + agAB
= ¢y D ClB D CQA & CgAB

Co 1 0 0O Qo
where ‘ = 1100 . =
Co 1 010 as
C3 1 1 11 as
or c = Ta

In general the T,, matrix is formed recursively from the T, _; matrix by:

_ Tnfl 0 _ 1 0
re (T 0 ) e me (1)

It can be shown that this transformation matrix also serves as the reverse
transformation matrix, that is, the matrix is self-inverse so that the reverse
transformations are very straightforward:

c=T.a and a=T.c

However, be warned:
T Ty =Ty Ta=1

where T is the identity matrix is true only when the arithmetic is performed
using modulus(2) arithmetic.

One practical difficulty is that the T, matrix for transformations on n
input variables is of dimension 2" x 2" which, for even quite small numbers
of variables, may be greater than the capacity of many computer systems.

Let us now look at how an expression such as:

AoBaoCo®D

can be implemented using XOR gates. The most significant feature of an
XOR gate is that there can only be two inputs. This is very different from an
AND or OR gate which may have many inputs. It is therefore not possible
to implement a multi input XOR function with a single gate. Instead a
hierarchical structure is necessary. There are two possible structures which
are illustrated in Figure 19.1.

The structures are either a binary division type tree structure or a cascade
structure but when the truth table for these gate structures are prepared and
the Karnaugh map is drawn up, a similar Karnaugh map structure, as shown
below, is obtained for both types of structure.
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Figure 19.1: Binary tree structure and cascade structure.

AB AB AB AB
CD| 0 1 0 1
CD| 1 0 1 0
C. 0 1 0 1
C.D| 1 0 1 0

Inspection of this Karnaugh map or of the similar Karnaugh map which
is obtained for the lower logic gate circuit in Figure 19.1 will show that the
output from the circuit is a logic 1 when there are an odd number of 1’s
present at the inputs and the output is a logic 0 when there are an even
number of 1’s present at the inputs. The multi input XOR gate structure
can therefore be considered to be a parity generating circuit.

If we want to obtain a circuit which will implement an AND/XOR func-
tion of variables x; for 0 < 7 <n — 1 such as:

f(a:”_l...aro) =1P 21Ty P X123 B L1204 D T3X4 D T1X2L3 B ToX3T4

then this is most simply implemented as a circuit employing a bus structure
as shown in Figure 19.2 in which xy = 1 and the other AND gate combina-
tions are picked off the bus and then combined into the sequential version
of the XOR array. The advantage of this type of structure is that it can
be fabricated as a standard integrated circuit and then customized by mak-
ing or breaking the interrconnects between the input bus of z; to z, inputs
and the n inputs to each of the AND gates. As we will see in the unit on
Programmable Logic Devices, this is a very cost effective way of obtaining
Application Specific Integrated Circuits (ASICs).
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Figure 19.2: Circuit implementation of a Reed-Muller AND/XOR function.
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19.2 Problems

19.1 Show, by drawing up the truth tables, that the following rules are
correct:

A+B = A®B®AB=A® AB=B& BA
ABB®C) = ABo® AC

19.2 Explain why it is possible to replace the + operators in the Sum-of-
Product expression by & eXclusive-OR operators. Justify your answer
by worked truth table examples.

19.3 Obtain the truth tables for the circuits shown in Figure 19.1 (a) and
(b). Draw the Karnaugh map which represents these circuits. What is
the most significant feature of the Karnaugh maps?

19.4 Show, by explicit calculation using a truth table structure similar to
that used in Example 5.2, that:

(A®B)@C=A®(BaC)=Cao (Ba A)

19.5 What are the Reed-Muller terms which will give Karnaugh maps which
contain the maximum number of 1’s and which cannot be further sim-
plified?

19.6 The propagation delay time for a logic gate integrated circuit is the
delay between the application of a changed signal at the input and the
appearance of the resulting changed signal at the output. If the delay
for an XOR gate is 10 ns, calculate the propagation delay time for each
of the two XOR arrays shown in Figure 19.4. Obtain formulae for the
delays for the case of n inputs for each of the two configurations.

19.7 Show that the Reed-Muller form for the minterm function described
by:
f(za,x1,29) = Em(0)

is given by:
f(xz, T, .T()) =1 D Zo D I D i) D Toxq D Lo D T1T2 D ToI1T9

19.8 Show that the Reed-Muller form for the minterm function described
by:
f(x% T, .’L'()) - Em(oa 3, 5) 6)
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Figure 19.3: XOR gate array

is given by:
f(.’EQ,-’El,.’EO) - 1@I0®[E1@$2

19.9 Convert the Reed-Muller form for an expression given by:
f (22,21, 20) = 70 © To © 1120 ® T271 © T2T170

to the minterm form. Warning — If you use the T3 matrix to solve
this problem remember that the arithmetic is carried out modulus(2).

19.10 Calculate the terms on the extended Karnaugh map template on page
90 (Unit 15) which satisfy:

Q=A9B®CoODOESDF
and describe the resulting pattern in words.

19.11 Is it necessary to first convert a Sum of Products expression into the
Canonical SoP form before replacing the 4+ operators by & operators.
In other words, is the following expression valid?

AB+BC=AB®B.C



