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Chapter 3

3.1 The Plane Mirror Resonator
3.2 The Spherical Mirror Resonator

3.3 Gaussian modes and resonance
frequencies

3.4 The Unstable Resonator
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= The optical resonator (OR) is the
optical counterpart of an electronic
resonant circuit: it confines and stores
light at certain frequencies.

= Most important application: OR as a
container within which laser light is
generated.

= LASER=0R containing a light amplifying
medium

= OR determines frequency and spatial
distribution of the laser beam
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= Mirror resonators: 2 or 3 mirrors, 2D or
3D cavities

» Dielectric Resonators: use TIR instead of
MmIrrors:

- Fiber rings and integrated optic rings
— Microdisks, microspheres, etc
(Whispering Gallery modes)
— Micropillars
- Photonic Crystals
= Currently: Nanolasers with quantum

confinement of carriers (e.g electrons)
or photons .
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= Two key parameters:

- Modal volume V: volume occupied by
confined optical mode

— Quality factor Q: proportional to
storage time in units of optical
period

* V and Q represent the degrees of
spatial and temporal confinements,
respectively

= Large Q means low-loss resonator
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= Fabry-Perot interferometer: pair of
plane mirrors separated by distance d.
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z=0
Monochromatic plane: u(r)= Re[U(F)eZW]

Satisfies Helmholtz equation:

V2U + kU =0 with k = 27~
C
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= Standing wave solution is obtained for the
boundary conditions:

U(F)=0atz=0and U(F)=0atz=d

U(F) = A sinkz with kd = gr = k = q%, g=1.2.3,..

= g is the mode number, mode frequencies are:

v =gl
" q q2d " .
= Arbitrary wave = superposition of modes

U(r)= EAQ sink z
q

= Constant frequency difference between

adjacent modes (free spectral range): v, =2—il
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= The resonance wavelengths in the optical

medium are: A = -~ — 2d=ga,

A%
= Examples: v

-d =30 cm, n =1 (air), free spectral range = 500 MHz

- d 3 microns, n = 1(air), 50 THz (7 modes in visible range q=38,...,]1

=750,..., 429 nm)

o 0
__”_d . — vr=55 —

Resonator :
Resonant frequencies

- Free spectral range can be adjusted by

placing resonators in series
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= Calculation of light intensity in the
resonator:

- Summation of multiply reflected
amplitudes

— Phase shift after one round trip of

propagation (2d) is 90=27n2d=2kd

- Wave reproduces itself after a round

trip, thus: 2Tn2d=2kd=2qn,q =1, 23..

21

U(r, t) — eri(k.T—ZR’Vt), Ir r = >

2d forr =2d
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the resonator:

=%~ Summation of multiply 77
reflected amplitudes for
perfect “non lossy” resonator:

204 _i2%04 _i%%4 (2T, j
U=Uje * U,=Ue * =Uje * ,etc... Ui= erl(’l)zjd
. . N -

Total amplitude: U = U= Uoze"(ZT)zjd
U=U,+U,+U, +... =0
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= |f resonator has losses, amplitude
reduction upon reflection is taken into

account (r reflection coefficient):
Total amplitude :U =U, +rU, +7r°U, + ...

r = complex reflection coefficient (overall amplitude attenuation)
N

Intensity : [ = ‘U ‘2 e Z g2
I =0
I = 2 = transmitted intensity
2F) . (@
I+ 7 >t 5 ) 21T 2mvd
—=kd =—d =

. : . A c
I,=lU 0‘2 = 1ncident intensity

R = ‘r 2, reflectivity of lossy mirror (or overall losses over round trip)

Ir| |_. Intermode spacin Vv
Finesse of resonator = P g =_F

F =
1— [r] Width of a mode  &v




O S S —
1 [ 1
= | B™. (™. .l w
06 é" 2 [ < 1+(—) Sin2 Ji—
1 +100 .m (1007x) o k VF)
| V, = i,[o = Incident intensity
U U U U L— = round-trip time
.= = 2.'%33 2.=94 24335 2.‘;6 VF
\ / \ / \ / \ ] \ Spectral width of a mode = Yr
1 F
n’ (1007ux) Spectral width depends
strongly on finesse (F). Ct.
F=100 vs 10...
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= The two principal sources of loss in the optical

resonator are

- Absorption and scattering in the medium
between the mirror (see laser amplifier):

Round trip power attenuation: exp(-2a,d)

o, : linear absorption coefficient of the medium

- Losses arising from imperfect reflection at
the mirrors (necessary transmission + finite

size effects):

Mirrors of reflectance: R, and R,

Overall round trip loss of intensity :

R.R,exp(-2a,d)=r"

Overall distributed-loss written as:
exp(—ZaFd) = R R, exp(—Zan)

1 1
oa =a.+—VLo
T TP RER,
Ultimately (after maths): F = Ed
(04

r

if a.d<<1 (small loses)

13

3.Optical Resonator




= The resonance linewidth is inversely
proportional to the loss factor («, d)

C

Finesse is by definition F = £ — gy ~-2d__
ov T 2
ad

a, is the loss per unit length, ca, is the loss per unit time
The resonator lifetime or photon lifetime in cavity Is:
1 1

7, = —, thus ov = ——
ca, 27T,
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= The Quality factor Q can be used to
characterise the losses:

0=2r Stored energy

Energy loss per cycle
In the case of an optical resonator (laser), one can show that :
Q=2nv,T,
0= Yo g , V, = Irequency of one of the modes
VF
= Since the resonator frequencies are much
larger than the mode spacing, then O >> F
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= What are the requirements for a laser:

— Assume 3-D resonator (3 pairs of
parallel mirrors, closed resonator),
equivalent to black-body cavity.

- Number and frequency of modes is
given by the particle in the box

model (photons):
dN 8mav*
=—— dv
|% C
V=1cm’,v=3x10" Hz, dv=3x10" Hz

dN =2x10° modes
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= All the modes would have comparable Q in the
3D resonator

- To be avoided in a laser as it would cause
all the atoms to emit power into a large
number of modes (would differ in their
frequency and spatial characteristics)

= Large, open resonators consisting of opposite
flat/curved reflectors must be used:

- Energy of the vast majority of modes lost
after a single pass

- Surviving modes are near the axis
17
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= Ray confinement:
- Concave R<O,
- Convex R>0,

— Only meridional (lie
In a plane passing
through the optical
axis) and paraxial

rays are considered d d
» Geometric optics i sr=ltp s=1+p
ptics is R, R,

sufficient to find the
condition for the P378-381. Chapter 10.

existence of the

confined modes .
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» Condition for the existence of confined
modes:

— Qutside this domain the resonator is said

to be unstable O<g g, =<1
<g.8 <

= For same radii, stability condition becomes:

R =R,= g =8,=8
d

(=R)

= Three resonators of practical interest:
confocal concentric, confocal/planar

3.Optical Resonator

-l=g=+1=0=< <2
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Stability condition:
R =R,=g =g,=8

—-l=sg=+1=0

3.Optical Resonator

a. Planar
(Ry=Ro= )

WLLLLLLL
RaaRRRER]|

b. Symmetrical confocal
(Rl = R2 = —d)

c. Symmetrical
concentric
(Ry=Ry=-d/2)

d. Confocal/planar
(R1=-d, Ryp= )

e. Concave/convex
(R1<0, R>>0)



= Gaussian beams are stable modes of the
spherical mirror resonator: wavefronts and phase
match exactly the boundary conditions imposed
by spherical mirror resonator (Helmholtz paraxial
equation).

= Gaussian beam retraces incident beam if the
radius of the wavefronts is exactly the same as
the mirror radius.

» Phase of Gauss;{ag beam:
@(R,Z) = kz - C(Z) + A with p° = x> +y°

2R(z)

On-axis: ¢(0,z) = kz - &(z2)

Z : :
c (z) = arctan l\ = ) : phase retardation with respect to plane wave
0
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= See chapter 10
for details
(symmetrical
resonator):

R, =R,=-R|

m ! z,==-d/2,z,=d/2
- =(2_1) RI=R2=-R

i R(z)=zl+(zo)

iy _
— 4 (Z
= 1+

2 |
(@)
L
;—/
\®)
L ]
N | —



John T Costello 
R1 = R2 = -|R|


Zg

Z; =271 +d R(Z)=Z+?
R]_ — Z1 +z_o,_R2 — Z9 +z_o
24 —
""" R,+ R, +2d
0 =

(R, + R, + 2d)?
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= See chapter 10
for details
(symmetrical
resonator):

R, =R,=-R|

Z1=_d/2, Z2=d/2

R(z)=z2 1+(Z—0)

<

[ |
N | =

W(z)=W, 1+£i)

(1 B e




= Resonance frequencies can be calculated
from the resonance condition (round trip
phase change is exactly 2m):

At mirrors location:

@(0,z,)=kz,-&(z,) and ¢(0,z,) = kz, - &(z,)

Phase change from z1 to z2:

Ap=9(0,2,)~¢(0,2,) = k(z,~2,)~[£(2,) - E(2,)] = kd - AL
For one round trip + phase matching condition:
Ap=2(kd—Al)=2qm (q==1,%2,..)

AC

v,=qv, +—Vv,, frequency spacing: (VF — _)
T 2d
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= All the Hermite-Gaussian beams of
order (I,m) are also good solutions.

= All (.,m) modes have same wavefronts
as (0,0) but different amplitudes:
Conditions for wavefront matching are
identical.

= The entire family of 4,, G, G, are also
modes of the spherical mirror resonator

= The resonance frequencies depend on

(Lm)

26
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Intensity distribution of Hermite - Gaussian modes:

Ilm(x,y,Z)=‘Alm‘2 V[‘j(/(;) G/ ;V/?Zx) G ;V/?Zy))

TEM,, modes: G,, G, Hermite-Gaussian function of order [, m
A,,, =constant (I, m)
TEM,, = Gaussian Beam

27

3.Optical Resonator



= Phase matching conditions provide

resonance frequencies:
Phase of the axial modes:

(p(O,z) = kz - (l +m+ I)C(z)

After a round trip + phase matching condition
2kd - 2(1 +m + I)AC =2qn (q = 11,12,...)
Resonance frequencies:

AC

Vv, =qV; +(l+m+1)—=v,
T

= Modes of different ¢ but same (I,m) are
called longitudinal (axial) modes

= Modes with different (I,m) represent
different transverse modes

3.Optical Resonator
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= Close to regions of ‘unconfinement’, beam
size Increases

= Light losses due to missing the mirror become
important (diffraction losses).

= For high power applications, large volume
modes and diffraction losses are desirable

= High diffraction losses are good for a high gain
situation (see later).

= Qutput beam has large aperture: optics are
simplified

= Losses depend only on mirrors radii of

curvature and separation distance.
29
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3.Optical Resonator

= Spherical

wave picture
of the mode
In an
unstable
resonator.

Points P,
and P, are

the virtual
centres of
the spherical
waves.
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