Quantum Electronics

Laser Physics

Chapter 3

The Optical Resonator

3.1 The Plane Mirror Resonator
3.2 The Spherical Mirror Resonator
3.3 Gaussian modes and resonance frequencies
3.4 The Unstable Resonator

Introduction

- The optical resonator (OR) is the optical counterpart of an electronic resonant circuit: it confines and stores light at certain frequencies.
- Most important application: OR as a container within which laser light is generated.
- LASER=OR containing a light amplifying medium
- OR determines frequency and spatial distribution of the laser beam

Introduction

From Fundamentals of Photonics, Saleh and Teich, Wiley, chap 10, p. 366

Introduction

- Mirror resonators: 2 or 3 mirrors, 2D or 3D cavities
- Dielectric Resonators: use TIR instead of mirrors:
- Fiber rings and integrated optic rings
- Microdisks, microspheres, etc (Whispering Gallery modes)
- Micropillars
- Photonic Crystals
- Currently: Nanolasers with quantum confinement of carriers (e.g electrons) or photons

Introduction

- Two key parameters:
- Modal volume V: volume occupied by confined optical mode
- Quality factor Q: proportional to storage time in units of optical period
- V and Q represent the degrees of spatial and temporal confinements, respectively
- Large Q means low-loss resonator

3.1- Plane Mirror Resonator

- Fabry-Perot interferometer: pair of plane mirrors separated by distance d.

Monochromatic plane: $u(\vec{r})=\operatorname{Re}\left[U(\vec{r}) e^{2 \pi i t}\right]$
Satisfies Helmholtz equation:

$$
\nabla^{2} U+k^{2} U=0 \text { with } k=2 \pi \frac{v}{c}
$$

3.1- Plane Mirror Resonator

- Standing wave solution is obtained for the boundary conditions:

$$
\begin{aligned}
& U(\vec{r})=0 \text { at } z=0 \text { and } U(\vec{r})=0 \text { at } z=d \\
& U(\vec{r})=A \sin k z \text { with } k d=q \pi \Rightarrow k=q \frac{\pi}{d}, q=1,2,3, \ldots
\end{aligned}
$$

- q is the mode number, mode frequencies are:

$$
v_{q}=q \frac{c}{2 d}
$$

- Arbitrary wave = superposition of modes

$$
U(r)=\sum_{q} A_{q} \sin k_{q} z
$$

- Constant frequency difference between adjacent modes (free spectral range): $v_{F}=\frac{c}{2 d}$

3.1- Plane Mirror Resonator

- The resonance wavelengths in the optical medium are: $\lambda_{q}=\frac{c}{v_{q}} \Rightarrow 2 d=q \lambda_{q}$
Examples:
- Examples:
$-\mathrm{d}=30 \mathrm{~cm}, \mathrm{n}=1$ (air), free spectral range $=500 \mathrm{MHz}$
- $d=3$ microns, $n=1$ (air), 50 THz (7 modes in visible range: $q=8, \ldots, 14, \lambda_{q}$ $=750, \ldots, 429 \mathrm{~nm}$)

- Free spectral range can be adjusted by placing resonators in series

3.1- Plane Mirror Resonator

- Calculation of light intensity in the resonator:
- Summation of multiply reflected amplitudes
- Phase shift after one round trip of propagation (2 d) is $\varphi=\frac{2 \pi}{\lambda} 2 d=2 k d$
- Wave reproduces itself after a round trip, thus: $\frac{2 \pi}{\lambda} 2 d=2 k d=2 q \pi, q=1,2,3 \ldots$

$$
U(r, t)=U_{0} e^{i(k \cdot r-2 \pi v t)}, k \cdot r=\frac{2 \pi}{\lambda} 2 d \text { for } r=2 d
$$

3.1- Plane Mirror Resonator

$U_{1}=U_{0} e^{-i \frac{2 \pi}{\lambda} 2 d}, U_{2}=U_{1} e^{-i \frac{2 \pi}{\lambda} 2 d}=U_{0} e^{-i \frac{2 \pi}{\lambda} 4 d}, e t c \ldots \quad U_{j}=U_{0} e^{i\left(\frac{2 \pi}{\lambda}\right) 2^{j} d}$ Total amplitude:
$U=U_{0}+U_{1}+U_{2}+\ldots$

$$
U_{\text {Total }}=U=U_{0} \sum_{j=0}^{N} e^{i\left(\frac{2 \pi}{\lambda}\right) 2^{j} d}
$$

3.1-Plane Mirror Resonator

- If resonator has losses, amplitude reduction upon reflection is taken into account (r reflection coefficient):
Total amplitude : $U=U_{0}+r U_{1}+r^{2} U_{2}+\ldots$ $r=$ complex reflection coefficient (overall amplitude attenuation)
Intensity : $I=|U|^{2}$

$$
U_{\text {rotal }}=U=U_{0} \sum_{j=0}^{N} r^{j} e^{i\left(\frac{2 \pi}{\lambda}\right)^{j} d}
$$

$$
I=\frac{I_{0}}{1+\left(\frac{2 F}{\pi}\right)^{2} \sin ^{2}\left(\frac{\varphi}{2}\right)}=\text { transmitted intensity }
$$

$$
I_{0}=\left|U_{0}\right|^{2}=\text { incident intensity } \frac{1}{2}=k d=\frac{}{\lambda} d=\frac{}{c}
$$

$R=|r|^{2}$, reflectivity of lossy mirror (or overall losses over round trip)
$F=\frac{\sqrt{|r|}}{1-|r|}$ Finesse of resonator $=\frac{\text { Intermode spacing }}{\text { Width of a mode }}=\frac{v_{\mathrm{F}}}{\delta v}$

3.1- Plane Mirror Resonator

3.1- Plane Mirror Resonator

- The two principal sources of loss in the optical resonator are
- Absorption and scattering in the medium between the mirror (see laser amplifier):
Round trip power attenuation: $\exp \left(-2 \alpha_{s} d\right)$
α_{s} : linear absorption coefficient of the medium
- Losses arising from imperfect reflection at the mirrors (necessary transmission + finite size effects):

Mirrors of reflectance: R_{1} and R_{2}
Overall round trip loss of intensity :
$R_{1} R_{2} \exp \left(-2 \alpha_{S} d\right) \equiv r^{2}$

3.1 Plane Mirror Resonator

- The resonance linewidth is inversely proportional to the loss factor ($\alpha_{\mathrm{r}} \mathrm{d}$)

Finesse is by definition $F=\frac{v_{F}}{\delta v} \rightarrow \delta v \approx \frac{\frac{c}{2 d}}{\frac{\pi}{\alpha} d}=\frac{c \alpha_{r}}{2 \pi}$
α_{r} is the loss per unit length, $c \alpha_{r}$ is the loss per unit time
The resonator lifetime or photon lifetime in cavity is:
$\tau_{\mathrm{p}}=\frac{1}{c \alpha_{r}}$, thus $\delta \nu=\frac{1}{2 \pi \tau_{\mathrm{p}}}$

3.1 Plane Mirror Resonator

- The Quality factor Q can be used to characterise the losses:
$Q=2 \pi \frac{\text { Stored energy }}{\text { Energy loss per cycle }}$
In the case of an optical resonator (laser), one can show that :
$\mathrm{Q}=2 \pi v_{0} \tau_{p}$
$Q=\frac{v_{0}}{v_{F}} F, v_{0}=$ frequency of one of the modes
- Since the resonator frequencies are much larger than the mode spacing, then $Q \gg F$

3.1-Plane Mirror Resonator

- What are the requirements for a laser:
- Assume 3-D resonator (3 pairs of parallel mirrors, closed resonator), equivalent to black-body cavity.
- Number and frequency of modes is given by the particle in the box model (photons):
$\frac{d N}{V}=\frac{8 \pi v^{2}}{c^{3}} d v$
$V=1 \mathrm{~cm}^{3}, v=3 \times 10^{14} \mathrm{~Hz}, d v=3 \times 10^{10} \mathrm{~Hz}$
$d N=2 \times 10^{9}$ modes

3.1-Plane Mirror Resonator

- All the modes would have comparable Q in the 3D resonator
- To be avoided in a laser as it would cause all the atoms to emit power into a large number of modes (would differ in their frequency and spatial characteristics)
- Large, open resonators consisting of opposite flat/curved reflectors must be used:
- Energy of the vast majority of modes lost after a single pass
- Surviving modes are near the axis

3.2 Spherical Mirror Resonator

- Ray confinement:
- Concave $\mathrm{R}<0$,
- Convex R>0,
- Only meridional (lie in a plane passing through the optical axis) and paraxial rays are considered
- Geometric optics is sufficient to find the condition for the existence of the confined modes

3.2 Spherical Mirror Resonator

- Condition for the existence of confined modes:
- Outside this domain the resonator is said to be unstable

$$
0 \leq g_{1} g_{2} \leq 1
$$

- For same radii, stability condition becomes:

$$
\begin{aligned}
& R_{1}=R_{2} \Rightarrow g_{1}=g_{2}=g \\
& -1 \leq g \leq+1 \Rightarrow 0 \leq \frac{d}{(-R)} \leq 2
\end{aligned}
$$

- Three resonators of practical interest: confocal concentric, confocal/planar

3.2-Spherical Mirror Resonator

Stability condition:

a. Planar
($R_{1}=R_{2}=\infty$)
b. Symmetrical confocal $\left(R_{1}=R_{2}=-d\right)$

c. Symmetrical concentric $\left(R_{1}=R_{2}=-d / 2\right)$

d. Confocal/planar $\left(R_{1}=-d, R_{2}=\infty\right)$

e. Concave/convex ($R_{1}<0, R_{2}>0$)
3.3 Gaussian Modes and resonance frequencies

- Gaussian beams are stable modes of the spherical mirror resonator: wavefronts and phase match exactly the boundary conditions imposed by spherical mirror resonator (Helmholtz paraxial equation).
- Gaussian beam retraces incident beam if the radius of the wavefronts is exactly the same as the mirror radius.
- Phase of Gaussian beam:
$\varphi(R, z)=k z-\zeta(z)+\frac{k \rho^{2}}{2 R(z)}$ with $\rho^{2}=x^{2}+y^{2}$
On-axis: $\varphi(0, z)=k z-\zeta(z)$
$\zeta(z)=\arctan \left(\frac{z}{z_{0}}\right):$ phase retardation with respect to plane wave $\underset{21}{\text { 3.Optical Resonator }}$

3.3 Gaussian Modes and resonance frequencies

- See chapter IO for details
(symmetrical resonator):

$$
\begin{aligned}
& R_{1}=R_{2}=-|R| \\
& z_{1}=-d / 2, z_{2}=d / 2 \\
& R(z)=z\left\lfloor 1+\left(\frac{z_{0}}{z}\right)^{2}\right]
\end{aligned}
$$

$$
W(z)=W_{0}\left[1+\left(\frac{z}{z_{0}}\right)^{2}\right]^{\frac{1}{2}}
$$

3.3 Gaussian Modes and resonance frequencies

$$
\begin{gathered}
z_{2}=z_{1}+d \quad R(z)=z+\frac{z_{0}^{2}}{z} \\
R_{1}=z_{1}+\frac{z_{0}^{2}}{z_{1}}-R_{2}=z_{2}+\frac{z_{0}^{2}}{z_{2}} \\
z_{1}=\frac{-d\left(R_{2}+d\right)}{R_{2}+R_{1}+2 d} \\
z_{0}^{2}=\frac{-d\left(R_{1}+d\right)\left(R_{2}+d\right)\left(R_{1}+R_{2}+d\right)}{\left(R_{2}+R_{1}+2 d\right)^{2}}
\end{gathered}
$$

3.3 Gaussian Modes and resonance frequencies

3.3 Gaussian modes and resonance frequencies

- Resonance frequencies can be calculated from the resonance condition (round trip phase change is exactly 2π):
At mirrors location:

$$
\varphi\left(0, z_{1}\right)=k z_{1}-\zeta\left(z_{1}\right) \text { and } \varphi\left(0, z_{2}\right)=k z_{2}-\zeta\left(z_{2}\right)
$$

Phase change from $z 1$ to $z 2$:

$$
\Delta \varphi=\varphi\left(0, z_{2}\right)-\varphi\left(0, z_{1}\right)=k\left(z_{2}-z_{1}\right)-\left[\zeta\left(z_{2}\right)-\zeta\left(z_{1}\right)\right]=k d-\Delta \zeta
$$

For one round trip + phase matching condition:

$$
\Delta \varphi=2(k d-\Delta \zeta)=2 q \pi(q= \pm 1, \pm 2, \ldots)
$$

$v_{q}=q v_{F}+\frac{\Delta \zeta}{\pi} v_{F}$, frequency spacing: $\left(v_{F}=\frac{c}{2 d}\right)$

3.3 Gaussian modes and resonance frequencies

- All the Hermite-Gaussian beams of order (l, m) are also good solutions.
- All (l, m) modes have same wavefronts as $(0,0)$ but different amplitudes: Conditions for wavefront matching are identical.
- The entire family of $A_{l, m} G_{l} G_{m}$ are also modes of the spherical mirror resonator
- The resonance frequencies depend on (l, m)

Gaussian Beams - Modes

Intensity distribution of Hermite-Gaussian modes:
$I_{l m}(x, y, z)=\left|A_{l, m}\right|^{2}\left[\frac{W_{0}}{W(z)}\right]^{2} G_{l}^{2}\left(\frac{\sqrt{2} x}{W(z)}\right) G_{m}^{2}\left(\frac{\sqrt{2} y}{W(z)}\right)$
TEM ${ }_{l m}$ modes: G_{l}, G_{m} Hermite-Gaussian function of order l, m
$A_{l, m}=$ constant (l, m)
$\mathrm{TEM}_{00}=$ Gaussian Beam

3.3 Gaussian modes and resonance frequencies

- Phase matching conditions provide resonance frequencies:
Phase of the axial modes:
$\varphi(0, z)=k z-(l+m+1) \xi(z)$
After a round trip + phase matching condition
$2 k d-2(l+m+1) \Delta \zeta=2 q \pi \quad(q= \pm 1, \pm 2, \ldots)$
Resonance frequencies:
$v_{q}=q v_{F}+(l+m+1) \frac{\Delta \zeta}{\pi} v_{F}$
- Modes of different q but same (l, m) are called longitudinal (axial) modes
- Modes with different (l, m) represent different transverse modes

3.4 Unstable Resonator

- Close to regions of 'unconfinement’, beam size increases
- Light losses due to missing the mirror become important (diffraction losses).
- For high power applications, large volume modes and diffraction losses are desirable
- High diffraction losses are good for a high gain situation (see later).
- Output beam has large aperture: optics are simplified
- Losses depend only on mirrors radii of curvature and separation distance.

3.4 Unstable Resonator

- Spherical
wave picture of the mode in an
unstable resonator.
- Points P_{1} and P_{2} are the virtual centres of the spherical waves.

