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! The optical resonator (OR) is the 
optical counterpart of an electronic 
resonant circuit: it confines and stores 
light at certain frequencies.

! Most important application: OR as a 
container within which laser light is 
generated.

! LASER=OR containing a light amplifying 
medium

! OR determines frequency and spatial 
distribution of the laser beam

Introduction
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Introduction

From Fundamentals of Photonics, Saleh 
and Teich, Wiley, chap 10, p.366
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! Mirror resonators: 2 or 3 mirrors, 2D or 
3D cavities

! Dielectric Resonators: use TIR instead of 
mirrors:
– Fiber rings and integrated optic rings
– Microdisks, microspheres, etc 

(Whispering Gallery modes)
– Micropillars
– Photonic Crystals

! Currently: Nanolasers with quantum 
confinement of carriers (e.g electrons) 
or photons 

Introduction
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! Two key parameters:
– Modal volume V: volume occupied by 

confined optical mode
– Quality factor Q: proportional to 

storage time in units of optical 
period

! V and Q represent the degrees of 
spatial and temporal confinements, 
respectively

! Large Q means low-loss resonator

Introduction
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3.1- Plane Mirror Resonator
! Fabry-Perot interferometer: pair of 

plane mirrors separated by distance d.
 

z = 0 z = d 

z  

    

€ 

Monochromatic plane:  u(
! 
r ) = Re U(

! 
r )e2πiνt[ ]

  

€ 

Satisfies Helmholtz equation:

∇2U + k 2U = 0 with k = 2π ν
c
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! Standing wave solution is obtained for the 
boundary conditions:

! q is the mode number, mode frequencies are:

! Arbitrary wave = superposition of modes 

! Constant frequency difference between 
adjacent modes (free spectral range):

3.1- Plane Mirror Resonator

    

€ 

U ! r ( ) = 0 at z = 0 and U ! r ( ) = 0 at z = d

U ! r ( ) = A sin kz with kd = qπ ⇒ k = q π
d

, q = 1,2,3,...

€ 

ν q = q c
2d

€ 

U r( ) = Aq sin kqz
q
∑

€ 

ν F =
c
2d



! The resonance wavelengths in the optical 
medium are:

! Examples:
– d = 30 cm, n =1 (air), free spectral range = 500 MHz
– d = 3 microns, n = 1(air), 50 THz (7 modes in visible range: q = 8,...,14, λq 

= 750,..., 429 nm)

– Free spectral range can be adjusted by 
placing resonators in series

–
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3.1- Plane Mirror Resonator

€ 

λq =
c
ν q

⇒ 2d = qλq
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! Calculation of light intensity in the 
resonator:
– Summation of multiply reflected 

amplitudes
– Phase shift after one round trip of 

propagation (2d) is
– Wave reproduces itself after a round 

trip, thus:  

3.1- Plane Mirror Resonator

€ 

ϕ =
2π
λ
2d = 2kd

€ 

2π
λ

2d = 2kd = 2qπ , q = 1, 2,3...
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z = 0 z = d 

z  

U0 
U1 
U2 

r 
r 
r 

3.1- Plane Mirror Resonator

! Calculation of light intensity in 
the resonator:
– Summation of multiply 

reflected amplitudes for 
perfect “non lossy” resonator:

  

€ 

U1 =U 0e
−i 2π

λ
2d
,U 2 =U1e

−i 2π
λ
2d

=U 0e
−i 2π

λ
4d
,etc...

Total amplitude:
U =U 0 +U1 +U 2 + ...
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3.1-Plane Mirror Resonator
! If resonator has losses, amplitude 

reduction upon reflection is taken into 
account (r reflection coefficient):

€ 

Total amplitude :U =U 0 + rU1 + r 2U 2 + ...
r =  complex reflection coefficient (overall amplitude attenuation)

Intensity :  I = U 2

I =
I 0

1+
2F
π

# 

$ 
% 

& 

' 
( 

2

sin 2 ϕ
2
# 

$ 
% 
& 

' 
( 

 =  transmitted intensity

I 0 = U 0
2  =  incident intensity

R = r 2, reflectivity of lossy mirror (or overall losses over round trip)

F =
π R
1−R

,  Finesse of resonator = Intermode spacing
Width of a mode

=
ν F

δν
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3.1- Plane Mirror Resonator

Spectral width depends 
strongly on finesse (F). Cf. 
F=100 vs 10…

y
1

1 100 100πx( )sin2+
=

y
1

1 10 100πx( )sin2+
=

Spectral Response of the lossy resonator:
I
I0

=
1

1+ 2F
π

"
#$

%
&'

2

sin2 π
ν
νF

"

#$
%

&'

νF =
c

2d
, I0 ≡  Incident intensity

1
νF

= round-trip time

Spectral width of a mode ≈ νF

F
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3.1- Plane Mirror Resonator
! The two principal sources of loss in the optical 

resonator are
– Absorption and scattering in the medium 

between the mirror (see laser amplifier):

– Losses arising from imperfect reflection at 
the mirrors (necessary transmission + finite 
size effects):

  

€ 

Round trip power attenuation:  exp −2α Sd( )
α S :  linear absorption coefficient of the medium

€ 

Mirrors of reflectance :  R1 and R2

Overall round trip loss of intensity :
R1R2 exp −2α Sd( )≡ r 2

 

Overall distributed-loss written as:
exp −2α rd( ) = R1R2 exp −2αSd( )

α r = αS +
1
2d

Log
1

R1R2

Ultimately (after maths): F ≈ π
α rd

if α rd << 1 (small loses)
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3.1 Plane Mirror Resonator
! The resonance linewidth is inversely 

proportional to the loss factor (αrd)

 

Finesse is by definition F = νF

δν
→δν ≈

c
2d
π
α rd

=
cα r

2π

α r  is the loss per unit length, cα r  is the loss per unit time
The resonator lifetime or photon lifetime in cavity is:

τp =
1
cα r

, thus δν = 1
2πτp
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3.1 Plane Mirror Resonator
! The Quality factor Q can be used to 

characterise the losses:

! Since the resonator frequencies are much 
larger than the mode spacing, then 

€ 

Q = 2π Stored energy
Energy loss per cycle

In the case of an optical resonator (laser), one can show that :
Q = 2πν 0τ p

Q =
ν 0

ν F

F, ν 0 =  frequency of one of the modes

Q >> F
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3.1-Plane Mirror Resonator
! What are the requirements for a laser:

– Assume 3-D resonator (3 pairs of 
parallel mirrors, closed resonator), 
equivalent to black-body cavity.

– Number and frequency of modes is 
given by the particle in the box 
model (photons):

  

€ 

dN
V

=
8πν 2

c3
dν

V = 1cm 3 ,ν = 3×1014  Hz, dν = 3×1010  Hz
dN = 2×109  modes
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3.1-Plane Mirror Resonator
! All the modes would have comparable Q in the 

3D resonator
– To be avoided in a laser as it would cause 

all the atoms to emit power into a large 
number of modes (would differ in their 
frequency and spatial characteristics)

! Large, open resonators consisting of opposite 
flat/curved reflectors must be used:

– Energy of the vast majority of modes lost 
after a single pass

– Surviving modes are near the axis
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3.2 Spherical Mirror Resonator
! Ray confinement:

– Concave R<0,
– Convex R>0,
– Only meridional (lie 

in a plane passing 
through the optical 
axis) and paraxial 
rays are considered

! Geometric optics is 
sufficient to find the 
condition for the 
existence of the 
confined modes

 

d 

z 

R2 R1 

  

€ 

g1 = 1+
d
R1
, g2 = 1+

d
R2

P378-381. Chapter 10.
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3.2 Spherical Mirror Resonator

! Condition for the existence of confined 
modes:

– Outside this domain the resonator is said 
to be unstable

! For same radii, stability condition becomes:

! Three resonators of practical interest: 
confocal concentric, confocal/planar

€ 

0≤ g1g2 ≤ 1

€ 

R1 = R2 ⇒ g1 = g2 = g

−1≤ g ≤ +1⇒ 0 ≤ d
−R( )

≤ 2
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3.2-Spherical Mirror Resonator

  

€ 

Stability condition:
R1 = R2 ⇒ g1 = g2 = g

−1≤ g ≤ +1⇒ 0 ≤ d
−R( )

≤ 2



ϕ R, z( ) = kz −ζ z( ) + kρ2

2R z( )
 with ρ2 = x2 + y2

On-axis: ϕ 0, z( ) = kz −ζ z( )

ζ z( ) = arctan z
z0

%

&'
(

)*
: phase retardation with respect to plane wave
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3.3 Gaussian Modes and resonance frequencies
! Gaussian beams are stable modes of the 

spherical mirror resonator: wavefronts and phase 
match exactly the boundary conditions imposed 
by spherical mirror resonator (Helmholtz paraxial 
equation).

! Gaussian beam retraces incident beam if the 
radius of the wavefronts is exactly the same as 
the mirror radius.

! Phase of Gaussian beam:
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3.3 Gaussian Modes and resonance frequencies

! See chapter I0 
for details 
(symmetrical 
resonator):

  

€ 

R1 = R2 = −R
z1 = −d / 2, z2 = d / 2

R( z ) = z 1+
z0
z

# 

$ 
% 

& 

' 
( 
2) 

* 
) 

+ 

, 
+ 

W(z )=W0 1+
z
z0

# 

$ 
% 

& 

' 
( 

2- 

* 
) 
) 

. 

, 
+ 
+ 

1
2

€ 

z0 =
d
2
2
R
d
−1

# 

$ 
% 

& 

' 
( 

1
2

W0
2 =

λd
2π

2
R
d
−1

# 

$ 
% 

& 

' 
( 

1
2

W1
2 =W2

2 =
λd

π

d
R

# 

$ 
% 

& 

' 
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R
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& 

' 
( 
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2

John T Costello 
R1 = R2 = -|R|
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3.3 Gaussian Modes and resonance frequencies

23
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! See chapter I0 
for details 
(symmetrical 
resonator):

3.3 Gaussian Modes and resonance frequencies

  

€ 

R1 = R2 = −R
z1 = −d / 2, z2 = d / 2

R( z ) = z 1+
z0
z
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3.3 Gaussian modes and resonance frequencies
! Resonance frequencies can be calculated 

from the resonance condition (round trip 
phase change is exactly 2π):

  

€ 

At mirrors location:

ϕ 0,z1( ) = kz1 −ζ z1( ) and ϕ 0,z2( ) = kz2 −ζ z2( )
Phase change from z1 to z2:

Δϕ =ϕ 0,z2( )−ϕ 0,z1( ) = k z2 − z1( )− ζ z2( )−ζ z1( )[ ] = kd−Δζ
For one round trip +  phase matching condition:
Δϕ = 2 kd−Δζ( ) = 2qπ q = ±1,±2,...( )

  

€ 

ν q = qν F +
Δζ
π
ν F ,   frequency spacing: ν F =

c
2d

& 

' 
( 

) 

* 
+ 
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3.3 Gaussian modes and resonance frequencies
! All the Hermite-Gaussian beams of 

order (l,m) are also good solutions.
! All (l,m) modes have same wavefronts 

as (0,0) but different amplitudes: 
Conditions for wavefront matching are 
identical.

! The entire family of Al,m Gl Gm are also 
modes of the spherical mirror resonator

! The resonance frequencies depend on 
(l,m)
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Gaussian Beams - Modes

27

  

€ 

Intensity distribution of Hermite-Gaussian modes:

I l ,m x,y,z( ) = Al ,m
2 W0

W z( )

" 

# 
$ 

% 

& 
' 

2

Gl
2 2x
W z( )

( 

) 
* 

+ 

, 
- Gm

2 2y
W z( )

( 

) 
* 

+ 

, 
- 

TEMlm modes:Gl ,  Gm Hermite -Gaussian function of order l,  m
Al ,m = constant (l,  m)
TEM00 =  Gaussian Beam
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3.3 Gaussian modes and resonance frequencies
! Phase matching conditions provide 

resonance frequencies:

! Modes of different q but same (l,m) are 
called longitudinal (axial) modes

! Modes with different (l,m) represent 
different transverse modes

 

Phase of the axial modes:
ϕ 0, z( ) = kz − l + m +1( )ζ z( )
After a round trip + phase matching condition
2kd − 2 l + m +1( )Δζ = 2qπ   q = ±1,±2,...( )
Resonance frequencies:

νq = qνF + l + m +1( ) Δζ
π
νF
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3.4 Unstable Resonator
! Close to regions of ‘unconfinement’, beam 

size increases
! Light losses due to missing the mirror become 

important (diffraction losses).
! For high power applications, large volume 

modes and diffraction losses are desirable
! High diffraction losses are good for a high gain 

situation (see later).
! Output beam has large aperture: optics are 

simplified
! Losses depend only on mirrors radii of 

curvature and separation distance.
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3.4 Unstable Resonator
! Spherical 

wave picture 
of the mode 
in an 
unstable 
resonator.

! Points P1 
and P2 are 
the virtual 
centres of 
the spherical 
waves.


