The Gaussian Beam

2.1 The Gaussian Beam
2.2 The TEM ${ }_{00}$ mode
2.3 Beam quality: M^{2} factor
2.4 Transmission of Gaussian

Beam through thin lenses

2.1-The Gaussian Beam

- The Gaussian Beam is an important solution of the Helmholtz (Maxwell) paraxial wave equation(s).
- The Gaussian Beam solutions are the modes of the spherical mirror optical resonator (See III. Optical resonator).
- The optics of a laser beam is essentially that of the Gaussian beam

2.1-The Gaussian Beam

$U(\vec{r})=A(\vec{r}) e^{-i k z}$
$A(\vec{r})$ variation with position is very small over a distance of one λ.
It is still approximately planar.

- The Helmholtz Equation in the Paraxial Approximation becomes:

$$
\begin{aligned}
& \nabla_{T}^{2} A-i 2 k \frac{\partial A}{\partial z}=0 \\
& \nabla_{T}^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}} \equiv \text { Transverse Laplace operator }
\end{aligned}
$$

2.1-The Gaussian Beam

- The Gaussian beam solution of Maxwell's equations for the electric vector E is given by:

$$
\vec{E}(\vec{r})=E_{0}\left(-\hat{x}+\frac{x}{z+i z_{0}} \hat{z}\right) U(\vec{r})
$$

- \hat{x} and \hat{z} are units vectors in the $0 x$ and $0 z$ directions respectively and $U(r)$ is the complex amplitude of the scalar Gaussian beam.

2.1-The Gaussian Beam

- $\boldsymbol{U}(r)$ is written in the form [magnitude $X \exp (-$ iphase)]

$$
\begin{aligned}
& U(\vec{r})=A(\vec{r}) e^{-i k z} \\
& A(\vec{r})=A_{0} \frac{W_{0}}{W(z)} \exp \left(-\frac{\rho^{2}}{W^{2}(z)}\right) \exp \left(-i k \frac{\rho^{2}}{2 R(z)}+i \zeta(z)\right)
\end{aligned}
$$

The beam parameters are:
$W(z)$: Beam width $=$ radius (!)
W_{0} : Beam waist
$R(z)$: Radius of curvature of wavefronts
$\zeta(z)$: Phase factor

2.1-The Gaussian Beam

- Wavefronts of scalar Gaussian Beam (cylindrical coordinates)

- Electric field lines in ($x-z$) plane

2.1-The Gaussian Beam

$$
\begin{aligned}
& I(\vec{r})=|U(\vec{r})|^{2} \\
& I(\vec{r})=I(\rho, z) \\
& =I_{0}\left(\frac{W_{0}}{W(z)}\right)^{2} \exp \left(-\frac{2 \rho^{2}}{W^{2}(z)}\right)
\end{aligned}
$$

- At $z=z_{0}$, the on-axis intensity is halved
- z_{0} is called the Rayleigh range

2.1-The Gaussian Beam

$W_{0}=\left(\frac{\lambda z_{0}}{\pi}\right)^{\frac{1}{2}}:$ Beam Waist
z_{0} : the Rayleigh range
$W(z) \approx \frac{W_{0}}{z_{0}} z=\theta_{0} z$
$\theta_{0}=\frac{\lambda}{\pi W_{0}}$: Beam Divergence
-Measurement of the beam waist provides z_{0}.
-e.g: 266 nm (quadrupled NdYAG laser), $W_{0}=2.5 \mathrm{~mm}$:

- $z_{0}=75 \mathrm{~m}$ (depth of focus)
- $\theta_{0}=0.01 \mathrm{mrad}$

2.1-The Gaussian Beam

- Wavefronts and their radius of curvature

2.1-The Gaussian Beam

- The phase of the Gaussian Beam:

$$
\begin{aligned}
& \varphi(R, z)=k z-\zeta(z)+\frac{k \rho^{2}}{2 R(z)} \\
& \varphi(0, z)=k z-\zeta(z): \text { on-axis } \\
& \zeta(z)=\arctan \left(\frac{z}{z_{0}}\right): \text { phase retardation } \\
& \text { with respect to plane wave }
\end{aligned}
$$

2.1-The Gaussian Beam

- Most general solutions are HermiteGaussian functions (higher order Gaussian beams).
Intensity distribution of Hermite-Gaussian modes:
$I_{l, m}(x, y, z)=\left|A_{l, m}\right|^{2}\left[\frac{W_{0}}{W(z)}\right]^{2} G_{l}^{2}\left(\frac{\sqrt{2} x}{W(z)}\right) G_{m}^{2}\left(\frac{\sqrt{2} y}{W(z)}\right)$
TEM ${ }_{\mathrm{lm}}$ modes: G_{l}, G_{m} Hermite-Gaussian function of order l, m $A_{l, m}=$ constant (l, m)
$\mathrm{TEM}_{00}=$ Gaussian Beam

2.1-The Gaussian Beam

Hermite Gaussian Functions - Cartesian Coordinates

$E_{m m}(x, y, z)=E_{0} \frac{W_{0}}{w(z)}$

https://www.rp-photonics.com/hermite gaussian modes.html

$$
\begin{aligned}
& H_{n}\left(\sqrt{2} \frac{x}{w(z)}\right) \exp \left(-\frac{x^{2}}{w(z)^{2}}\right) \cdot H_{m}\left(\sqrt{2} \frac{y}{w(z)}\right) \exp \left(-\frac{y^{2}}{w(z)^{2}}\right) \\
& \cdot \exp \left(-i\left[k z-(1+n+m) \arctan \frac{z}{z_{R}}+\frac{k\left(x^{2}+y^{2}\right)}{2 R(z)}\right]\right)
\end{aligned}
$$

- The first eleven physicists' Hermite polynomials are:

$$
\begin{array}{rlr}
H_{0}(x) & =1, \\
H_{1}(x) & =2 x, & \\
H_{2}(x) & =4 x^{2}-2, & \\
H_{3}(x) & =8 x^{3}-12 x, & \\
H_{4}(x) & =16 x^{4}-48 x^{2}+12, & \\
H_{5}(x) & =32 x^{5}-160 x^{3}+120 x, \\
H_{6}(x) & =64 x^{6}-480 x^{4}+720 x^{2}-120, & \\
H_{7}(x) & =128 x^{7}-1344 x^{5}+3360 x^{3}-1680 x \\
H_{8}(x) & =256 x^{8}-3584 x^{6}+13440 x^{4}-13440 x^{2}+1680, \\
H_{9}(x) & =512 x^{-x^{2}}-9216 x^{7}+48384 x^{5}-80640 x^{3}+30240 x, \\
H_{10}(x) & =1024 x^{10}-23040 x^{8}+161280 x^{6}-403200 x^{4}+302400 x^{2}-30240 .
\end{array}
$$

Figure 1: Intensity profiles of the lowest-order Hermite-Gaussian modes, starting with TEM_{00} (lower left-hand side) and going up to TEM_{33} (upper right-hand side).

2.2 - TEM $_{00}$ mode

- Normal or Gaussian (non-normalised) function:

$$
G(x)=e^{-\frac{x^{2}}{2 \sigma^{2}}}
$$

$\sigma \mathrm{rms}$ (root mean square) width

- Generally:

$$
\begin{array}{ll}
g(x)=e^{-\alpha x^{2}} & G(0)=g(0)=1 \\
& \lim G(x) \rightarrow 0
\end{array}
$$

- If $\mathrm{G}(x)$ represents light intensity, how does one define the "edge" of the beam?

2.2 - TEM $_{00}$ mode

- Need to truncate $G(x)$ at certain values of $x\left(x_{t}\right.$ measured from $\left.I_{\max }\right)$
- $2 x_{t}$ defines the corresponding width

$$
\begin{array}{l|l}
I_{\max } \times \text { attenuation } & \text { Truncation @ } \\
\hline 1 / \sqrt{ } 2=0.707 \times 1 & 0.83 \sigma(3 \mathrm{~dB}) \\
1 / \sqrt{ }=0.606 \times 1 & \sigma(\mathrm{rms} \text { width }) \\
1 / 2=0.5 \times 1 & 1.18 \sigma(\mathrm{FHWM}) \\
1 / \mathrm{e}=0.368 \times 1 & 1.414 \sigma(1 / \mathrm{e}) \\
1 / \mathrm{e}^{2}=0.1 \times 1 \\
\text { (see graph on next page) } & 2 \sigma\left(1 / \mathrm{e}^{2} \text { width }\right)
\end{array}
$$

2.2 - TEM_{00} mode

- The intensity can be written as a function of P : total optical power carried by the beam. P is measured directly with a power meter.

$$
\begin{aligned}
& P=\int_{0}^{\infty} I(\rho, z) 2 \pi \rho d \rho=\frac{1}{2} I_{0}\left(\pi W_{0}^{2}\right) \\
& I(\rho, z)=\frac{2 P}{\pi W^{2}(z)} \exp \left(-\frac{2 \rho^{2}}{W^{2}(z)}\right)
\end{aligned}
$$

- The beam radius is taken as the ($1 / \mathrm{e}^{2}$) width: spot size
- For a given pulse duration, it is convenient to use fluence (Jcm^{-2}) -instead of intensity -as a number of laser processes are characterised by their fluence (eg. laser ablation threshold):
$F_{z}(r)=\frac{2 E_{T}}{\pi W_{z}^{2}} \exp \left[-2\left(\frac{r^{2}}{W_{z}^{2}}\right)\right]$
$E_{T}=$ Total energy in laser beam
$W_{z}=\frac{1}{\mathrm{e}^{2}}$ spot size on target (at z)
$\frac{E_{T}}{\pi W_{z}^{2}} \equiv$ Average fluence

2.2 - TEM $_{00}$ mode

Nd:YAG laser, 6 ns, 120 mJ, 266 nm

2.3 Beam Quality: M ${ }^{2}$ factor

- Gaussian beam is an idealisation
- Deviation of optical beam (waist diameter $2 \mathrm{~W}_{\mathrm{m}}$, divergence $2 \theta_{\mathrm{m}}$) from Gaussian form $\left(\mathrm{W}_{0}, \theta_{0}\right)$ measures optical quality: quantitative measure is M^{2}-factor:
$\mathrm{M}^{2}=\frac{2 \mathrm{~W}_{\mathrm{m}} 2 \theta_{m}}{2 \mathrm{~W}_{0} 2 \theta_{0}}=\frac{2 \mathrm{~W}_{\mathrm{m}} 2 \theta_{m}}{4 \lambda / \pi}$
$\mathrm{M}^{2}=\frac{\theta_{m}}{\theta_{0}}$ If the two beams have the same beam waist
$M^{2} \geq 1$
$\mathrm{M}^{2} \leq 1.1$ (single mode HeNe laser),
$\mathrm{M}^{2} \geq 3,4$ (high power multimode)

2.4 Transmission of Gaussian beams through thin lenses

- Gaussian beam remains Gaussian if paraxial nature of the wave is maintained.
- Beam is reshaped: waist and curvature are altered.
- Beam shaping, beam focusing can be achieved (optical design)

2.4 Transmission of Gaussian beams through thin lenses

Transmission of a Gaussian beam through a thin lens.

- Complex amplitude multiplied by phase factor as it passes through lens
- Wavefront is altered: new curvature, new phase (beam width $\mathrm{W}=\mathrm{W}$ ').

2.4 Transmission of Gaussian beams through thin lenses

- Parameters of the emerging beam:

$$
\begin{aligned}
& \frac{1}{R^{\prime}}=\frac{1}{R}-\frac{1}{f} \\
& W_{0}^{\prime}=\frac{W}{\sqrt{1+\left(\pi W^{2} / \lambda R^{\prime}\right)^{\prime}}} \text { (Waist radius) }
\end{aligned}
$$

$f=$ focal length of thin lens

$$
\begin{array}{ll}
\text { Waist radius: } & \mathrm{W}_{0}^{\prime}=M \mathrm{~W}_{0} \\
\text { Waist location : } & \left(\mathrm{z}^{\prime}-\mathrm{f}\right)=M^{2}(\mathrm{z}-\mathrm{f})
\end{array}
$$

Depth of focus : $\quad 2 z_{0}{ }^{\prime}=M^{2} 2 z_{0}$

$$
-\mathrm{z}^{\prime}=\frac{\mathrm{R}^{\prime}}{1+\left(\lambda R^{\prime} / \pi W^{2}\right)^{2}} \text { (Beam centre location) }
$$

Divergence angle : $2 \theta_{0}{ }^{\prime}=\frac{2 \theta_{0}}{M}$
Magnification: $\quad M=\frac{\mathrm{M}_{\mathrm{r}}}{\sqrt{1+\mathrm{r}^{2}}}$
$r=\frac{z_{0}}{z-f}$ and $\mathrm{M}_{\mathrm{r}}=\left|\frac{f}{z-f}\right|$

2.4 Transmission of Gaussian beams through thin lenses

Focusing a beam with a lens at the beam waist.

$$
\begin{aligned}
& W_{0}^{\prime}=\frac{W}{\sqrt{1+\left(z_{0} / f\right)^{2}}} \text { (Waist radius) } \\
& \mathrm{z}^{\prime}=\frac{\mathrm{R}^{\prime}}{1+\left(f / z_{0}\right)^{2}} \text { (Beam centre location) }
\end{aligned}
$$

- Beam shaping: use lens or series of lenses to reshape the Gaussian beam
- Lens at beam waist: do $z=0$ in previous equations

2.4 Transmission of Gaussian beams through thin lenses.
 Depth of focus $z_{0} \gg f$

Focusing a collimated beam.

- Small spot size is really important in laser scanning, laser printing, CD burning,...
- Need short f, thick beam and short wavelength
$W_{0}^{\prime} \approx \frac{f}{z_{0}} W_{0}=\frac{\lambda}{\pi W_{0}} f=\theta_{0} f$ (Waist radius) \quad If D (diameter of lens)
$=2 W_{0}$
$z^{\prime} \approx f$ (Beam centre location)
Focused spot size:

$$
2 W_{0}^{\prime} \approx \frac{4}{\pi} \lambda \frac{f}{D}=\frac{4}{\pi} \lambda F \#
$$

$F \# \rightarrow$ F-number of lens ${ }^{20}$

