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2.1-The Gaussian Beam

= The Gaussian Beam is an important
solution of the Helmholtz (Maxwell)
paraxial wave equation(s).

= The Gaussian Beam solutions are the
modes of the spherical mirror optical
resonator (See lll. Optical resonator).

= The optics of a laser beam is essentially
that of the Gaussian beam

https://en.wikipedia.org/wiki/Helmholtz_equation


John T Costello 
https://en.wikipedia.org/wiki/Helmholtz_equation


2.1-The Gaussian Beam
U(r)=A(F)e ™
A(r) variation with position is very small over
a distance of one A.

It is still approximately planar.

= The Helmholtz Equation in the Paraxial
Approximation becomes:

A
V2A - i2k %2 _ 0
02
J* 9’
V2 = ~+—5 = Transverse Laplace operator
ox~ oy




2.1-The Gaussian Beam

= The Gaussian beam solution of Maxwell’s
equations for the electric vector E is
given by:

X

E(F)=E,(-i+ 2)U(F)

Z+1Z,
« X and Z are units vectors in the Ox and
Oz directions respectively and U(r) is the

complex amplitude of the scalar Gaussian
beam.



2.1-The Gaussian Beam

*U(r) is written in the form [magnitude X exp(-
iphase)]
U(I_;)=A(l7)e_ikz

2

P |
ik ZR(Z)HC(Z))

=) _ W _ o’
A(r)=A, W(Z)exp( WZ(Z))exp

The beam parameters are:
W(z): Beam width = radius (!)
W, : Beam waist

R(z): Radius of curvature of wavefronts
C(z): Phase factor



2.1-The Gaussian Beam

Lt

S

ion)

= Wavefronts of
scalar Gaussian
Beam (cylindrical
coordinates)

» Electric field lines

— In (x-z) plane



2.1-The Gaussian Beam

0 W, P

I(7)=|U(7)] . ,tAt e :t 2 tEelon(-jaxis

. intensity is halve
I = I ’ . .
(=1 * 7, IS called the Rayleigh

W, | 20" | range
_J _ 6
() v




2.1-The Gaussian Beam

W(z)=W, 1+(i)

(72, ) - Beam Waist *Measurement of the beam
\ 7 waist provides z,.
z,. the Rayleigh range

‘e.g: 266 nm (quadrupled Nd-

W YAG laser), W, =2.5 mm:
W(z)=—z=0,z

2o = 7, = 75 m (depth of focus)
0, = : Beam Divergence =0, = 0.01 mrad

aW,



2.1-The Gaussian Beam
» Wavefronts and their radius of curvature

R(z)=z 1+(ﬁ)

<

‘Wavefronts
curvature is
minimum at z,,.

'Radius of
curvature of
spherical
wavefronts

«Same as
-spherical
wavefronts at

: largez R(z )=z

8
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2.1-The Gaussian Beam
* The phase of the Gaussian Beam:

2

@(R,z)=kz-8(z)+ 21;52)

@(0,z)=kz-C(z): on-axis

G(z)= arctan(i): phase retardation
<o

with respect to plane wave 9



2.1-The Gaussian Beam
= Most general solutions are Hermite-

Gaussian functions (higher order Gaussian

beams).
Intensity distribution of Hermite - Gaussian modes:
2

WO ) '\/Ex ) '\/Ey
Gl Gm 7l _\
Wiz)] (W(z)) "\W(z)
TEM,, modes: G,, G, Hermite-Gaussian function of order [, m
A,, =constant (/, m)
TEM,, = Gaussian Beam

I,(x.2)=[4,,]

TEM, TEM,, TEM,, | 10



2.1-The Gaussian Beam

Hermite Gaussian Functions - Cartesian Coordinates

Wq

E.(xy.2)=E, https://www.rp-photonics.com/hermite gaussian modes.html

Wiz)

Nexp[ -] A, [v7exp| -2
'H"(”EW]%[ w(z)ZJ & [“Ew(z)]exp[ w(zf’]
5 )
-exp| —I| kz - (14 n+m)arctan — + ———~

Zr 2R(zZ)

e The first eleven physicists' Hermite polynomials are:

Hy(z) =1,

Hy (z) = 2z, https://en.wikipedia.org/wiki/Hermite_polynomials
H,(z) = 42” — 2, — — —
Hy(z) = 82° —12a, H,(z) = (—1)”6””2 £6_$2 = (233 — i>n - 1.
Hy(z) = 162* — 48z* + 12, dz dx
Hs(z) = 322° — 1602° + 120z,

Hg(z) = 642° — 480z* + 7202* — 120,

H;(z) = 12827 — 13442° + 3360z — 1680z,

Hg(z) = 2562° — 3584x° + 13440z — 134402* + 1680,

Hy(z) = 5122° — 921627 + 48384x° — 80640z° + 30240z,

Hyp(z) = 1024z"° — 230402° + 1612802° — 403200z + 302400z — 30240. 15
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Figure 1: Intensity profiles of the lowest-order Hermite-Gaussian modes, starting with TEM,
(lower left-hand side) and going up to TEM3 (upper right-hand side).

https.//www.rp-photonics.com/hermite gaussian _modes.html




2.2 - TEM,, mode

= Normal or Gaussian (non-normalised)
function: ;

X

G(x)=e
o rms (root mean square) width
= Generally:
o(x)=e G(0)=5(0)=1

limG(x)—0

X—>=*00

= |f G(x) represents light intensity, how
does one define the “edge” of the beam?

11



2.2 - TEM,, mode

= Need to truncate G(x) at certain

values of x (x, measured from |, )

= 2X, defines the corresponding width

|, x attenuation | Truncation @

1/v2 =0.707x1 [0.830 (3 dB)
1/Ve = 0.606x1 o (rms width)
1/2 = 0.5x1 1.180 (FHWM)
1/e = 0.368x1 1.4146 (1/e)
1/ e2=0.13x1 20 (1/e2 width)

(see graph on next page) 1o
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2.2 - TEM,, mode

= The intensity can be

written as a function of P:
total optical power carried
by the beam. P is
measured directly with a
power meter.

F 1
P=f1(p,z)2npdp=510(nW02)
0
2P 20°
I(p,z)= -
(0:2) an(z)exp( WZ(Z))

The beam radius is taken
as the (1/e2) width: spot
Size

13



= For a given pulse duration, it
is convenient to use fluence 2.2 - TEMOO mode

(Jcm-2) -instead of intensity

-dS d number Of Iaser Nd:YAG laser, 6 ns, 120 mJ, 266 nm

processes are characterised St radus = 1470

1 4o eam energy = m

by their fluence (eg. laser 5 o g
ablation threshold):
2E - r? - ¢
F (r)=—F%exp|-2|—
JTWZ Wz &

Fluence Jcm
N

= Total energy in laser beam

1.5+

e

ET
W = iz spot size on target (at z)
E

_ = Average fluence L/ \L

z h
r (across laser spot) mm



2.3 Beam Quality: M2 factor

= Gaussian beam is an idealisation

= Deviation of optical beam (waist diameter
2W . divergence 260_) from Gaussian form
(W,,6,) measures optical quality:
quantitative measure is M2 -factor;
2W 20  2W. 20

T 2W20, 4Alm

M2

M* = 6—”” If the two beams have the same beam waist
0

M* =1

M?* < 1.1 (single mode HeNe laser),

M?* = 3,4 (high power multimode)

15



2.4 Transmission of Gaussian beams
through thin lenses

= Gaussian beam remains Gaussian if
paraxial nature of the wave is
maintained.

= Beam is reshaped: waist and
curvature are altered.

= Beam shaping, beam focusing can
be achieved (optical design)

16



2.4 Transmission of Gaussian beams
through thin lenses

" Transmission of a Gaussian beam through a thin lens.

» Complex amplitude multiplied by
phase factor as it passes through
lens

= Wavefront is altered: new curvature,
new phase (beam width w=w"). 17



2.4 Transmission of Gaussian beams
through thin lenses

= Parameters of the emerging beam:

1 11 Waist radius : WO' =MW,
R Waist location:  (z'-f)=M *(z-f)
W = il (Waist radius)
0 \/1 +(nW2/)LR’)2 Depth of focus: 2z, = M *2z,
| _ . 20,
7 = R - (Beam centre location) Divergence angle: 20, = M
1+(AR' [ ZW?) M
Magnification : M = -
: V141’
f=focal length of thin lens
F=—<"_ and M. = S
Z—f z-f




2.4 Transmission of Gaussian beams

zZp >l z
l*—‘ ]

Focusing a beam with a lens at the beam waist.

r w

) \/1+(Z0/f)2

R’ .
7' = - (Beam centre location)

) 1+(f/Zo)

W, (Waist radius)

~ through thin lenses

= Beam shaping: use
lens or series of
lenses to reshape
the Gaussian beam

= | ens at beam
waist: doz=0In
previous equations

19



2.4 Transmission of Gaussian beams through

thin Iens_es- Depth of focus z, >> f

03 e = 1 = Small spot size is
really important in

~ laser scanning, laser
| printing, CD burning,...
— o ~ = Need short f, thick
Focusing a collimated beam.
: beam and short
wavelength

W, ziWO _ f=6,f (Waistradius) * If D (diameter of lens)
W = 2W,

7' = f (Beam centre location) Focused spot size:

F # — F-number of lens2 °



