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Chapter 2  
The Gaussian Beam 

2.1 The Gaussian Beam
2.2 The TEM00 mode
2.3  Beam quality: M2 factor
2.4  Transmission of Gaussian 
Beam through thin lenses
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2.1-The Gaussian Beam
! The Gaussian Beam is an important 

solution of the Helmholtz (Maxwell) 
paraxial wave equation(s).

! The Gaussian Beam solutions are the 
modes of the spherical mirror optical 
resonator (See III. Optical resonator).

! The optics of a laser beam is essentially 
that of the Gaussian beam

John T Costello 
https://en.wikipedia.org/wiki/Helmholtz_equation
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U(! r ) = A(! r )e− ikz

A(! r ) variation with position is very small over
a distance of one λ.
It is still approximately planar.

! The Helmholtz Equation in the Paraxial 
Approximation becomes: 
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! The  Gaussian beam solution of Maxwell’s 
equations for the electric vector E  is 
given by:

!      and      are units vectors in the 0x and 
0z directions respectively and U(r) is the 
complex amplitude of the scalar Gaussian 
beam.

2.1-The Gaussian Beam
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z + iz0
ˆ z )U( ! r )

€ 

ˆ x 

€ 

ˆ z 



4

  

€ 

U( ! r ) = A( ! r )e−ikz
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•U(r) is written in the form [magnitude X exp(-
iphase)]

2.1-The Gaussian Beam
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The beam parameters are:
W(z ):  Beam width =  radius (! )
W0 : Beam waist
R( z ): Radius of curvature of wavefronts
ζ ( z ) :  Phase factor



5

! Wavefronts of 
scalar Gaussian 
Beam (cylindrical 
coordinates)

! Electric field lines 
in (x-z) plane

2.1-The Gaussian Beam
r, ρ(radial position)

zz = 0
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2.1-The Gaussian Beam

z = 0 z = z0 z = 2z0
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I( ! r ) = U( ! r ) 2

I( ! r ) = I(ρ ,z )
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• At z = z0, the on-axis 
intensity is halved
• z0  is called the Rayleigh 
range
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2.1-The Gaussian Beam
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2
:  Beam Waist

z0 :  the Rayleigh range

•Measurement of the beam 
waist provides z0.

•e.g: 266 nm (quadrupled Nd-
YAG laser), W0 = 2.5 mm:

! z0 = 75 m (depth of focus)

!θ0 = 0.01 mrad
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W(z ) ≈ W0

z0
z =θ 0z

θ 0 =
λ
πW0

:  Beam Divergence
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2.1-The Gaussian Beam
! Wavefronts and their radius of curvature
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Radius of 
curvature of 

spherical 
wavefronts

•Wavefronts 
curvature is 
minimum at z0.

•Same as 
spherical 
wavefronts at 
large z
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R( z ) ≈ z
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ϕ R,z( ) = kz−ζ z( ) +
kρ 2

2R z( )
ϕ 0,z( ) = kz−ζ z( ) :  on -axis

ζ z( ) = arctan z
z0
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+ :  phase retardation

with respect to plane wave 9

! The phase of the Gaussian Beam:
2.1-The Gaussian Beam
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! Most general solutions are Hermite-
Gaussian functions (higher order Gaussian 
beams).

2.1-The Gaussian Beam
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Intensity distribution of Hermite-Gaussian modes:
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TEMlm modes:Gl ,  Gm Hermite -Gaussian function of order l,  m
Al ,m = constant (l,  m)
TEM00 =  Gaussian Beam



2.1-The Gaussian Beam 
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Hermite Gaussian Functions - Cartesian Coordinates
https://www.rp-photonics.com/hermite_gaussian_modes.html

https://en.wikipedia.org/wiki/Hermite_polynomials



https://www.rp-photonics.com/hermite_gaussian_modes.html
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! Normal or Gaussian (non-normalised) 
function:

! Generally:

! If G(x) represents light intensity, how 
does one define the “edge” of the beam?

2.2 - TEM00 mode
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G( x ) = e
−
x2

2σ 2

σ  rms (root mean square) width
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g x( ) = e−α x
2
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G 0( ) = g 0( ) = 1
limG x( )

x→±∞

→ 0
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! Need to truncate G(x) at certain 
values of x (xt measured from Imax)

! 2xt defines the corresponding width

2.2 - TEM00 mode

Imax × attenuation Truncation @
1/√2 = 0.707×1 0.83σ (3 dB) 

width)1/√e = 0.606×1 σ (rms width)
1/2 = 0.5×1 1.18σ (FHWM)
1/e = 0.368×1 1.414σ (1/e) 

width)1/ e2 = 0.13×1 2σ (1/e2 width)
(see graph on next page)
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! The intensity can be 
written as a function of P: 
total optical power carried 
by the beam. P is 
measured directly with a 
power meter.

! The beam radius is taken 
as the (1/e2) width: spot 
size

2.2 - TEM00 mode
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P = I ρ ,z( )
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! For a given pulse duration, it 
is convenient to use fluence 
(Jcm-2) -instead of intensity 
-as a number of laser 
processes are characterised 
by their fluence (eg. laser 
ablation threshold):

2.2 - TEM00 mode
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ET =  Total energy in laser beam

Wz  =  1
e2  spot size on target (at z)

ET

πWz
2  ≡  Average fluence 

Nd:YAG laser, 6 ns, 120 mJ, 266 nm
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2.3 Beam Quality: M2 factor
! Gaussian beam is an idealisation
! Deviation of optical beam (waist diameter 

2Wm, divergence 2θm) from Gaussian form 
(W0, θ0) measures optical quality: 
quantitative measure is M2 -factor:

€ 

M 2 ≥ 1  
M 2 ≤ 1.1 (single mode HeNe laser), 
M 2 ≥ 3,4 (high power multimode)

M2 =
2Wm 2θm
2W0 2θ0

=
2Wm 2θm

4λ /π

M2 =
θm
θ0

 If the two beams have the same beam waist
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2.4 Transmission of Gaussian beams 
through thin lenses

! Gaussian beam remains Gaussian if 
paraxial nature of the wave is 
maintained.

! Beam is reshaped: waist and 
curvature are altered.

! Beam shaping, beam focusing can 
be achieved (optical design)
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! Complex amplitude multiplied by 
phase factor as it passes through 
lens

! Wavefront is altered: new curvature, 
new phase (beam width W = W’).

2.4 Transmission of Gaussian beams 
through thin lenses
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! Parameters of the emerging beam:

2.4 Transmission of Gaussian beams 
through thin lenses
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" R 
=

1
R
−

1
f

W0
" =

W

1+ πW 2 /λ " R ( )
2

 (Waist radius)

- " z = " R 

1+ λ " R /πW 2( )
2  (Beam centre location)
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Waist radius :        W0
" = MW0

Waist location :     " z - f( ) = M 2 z - f( )

Depth of focus :     2z0
" = M 2 2z0

Divergence angle :  2θ 0
" =

2θ 0

M

Magnification :        M = M r

1+ r 2

r =
z0

z− f
 and M r =

f
z− f

f = focal length of thin lens
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! Beam shaping: use 
lens or series of 
lenses to reshape 
the Gaussian beam

! Lens at beam 
waist: do z = 0 in 
previous equations

2.4 Transmission of Gaussian beams 
through thin lenses
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W0
" =

W

1+ z0 / f( )2
 (Waist radius)

" z = " R 
1+ f /z0( )2  (Beam centre location)
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! Depth of focus z0 >> f

! Small spot size is 
really important in 
laser scanning, laser 
printing, CD burning,...

! Need short f, thick 
beam and short 
wavelength

! If D (diameter of lens) 
= 2W0

2.4 Transmission of Gaussian beams through 
thin lenses
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Focused spot size:

2W0
! ≈

4
π
λ
f
D
=

4
π
λF #

F # → F-number of lens

W0
! ≈

f
z0

W0 =
λ

πW0

f = θ0 f   (Waist radius)

!z ≈ f  (Beam centre location)


