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I-1 Wave Optics: definitions

From experimental evidence:
Light wave (vibration) = scalar wave =
This description accounts for a large

number of optical phenomena
Nature of light remains unspecified.



I-1 Wave Optics: definitions

= Wave travels in a
medium with phase velocity c
(wave speed)

* |n vacuum, subscript O (zero) is

used,e.qg.,
Cor Uy, &
= The index of refraction defined as:
n = S0

C



I-1 Wave Optics: definitions

* Wavefunction is a real function of
position - defined by position vector r
and time : u(r,t)

= \WWavefunction satisfies the wave
equation:

Viu(r.) 1 9%u(r,t)

c: o
* Principle of superposition applies:
u(r,t)=u,(r,t)+u,(r,t)

= ()



I-1 Wave Optics: definitions

= OPTICAL INTENSITY is the optical power per
unit surface area (W.cm-=2). It is the
measurable quantity

* It is proportional to the time average of  (7:1)

I(F,t)=2(u’(F,1))

= At is taken over many light cycles......



I-1 Wave Optics: definitions

= OPTICAL POWER P = power (W)
flowing into an area A normal to the
direction of propagation:

P(t)=fAI(7,t)dA

= OPTICAL ENERGY: time integral of
optical power over the time interval

P=fAtP(t)dt



I-1 Wave Optics: definitions

* FLUENCE = Optical energy per unit surface
area (J.cm-2). Commonly specified for laser
light at the focus of a converging lens.

= Photodetectors:

* Photoelectric detectors: photon releases an
electron (photocurrent). Photodiode (p-i-n),
Schottky diodes (metal-semiconductors),
Photomultiplier tubes. Sensitive to intensity of
incident light

o Conversion of photon energy into heat: Power
meters. Temperature rise is measured with a
thermopile. Sensitive to total power absorbed



-2 Wave Optics: monochromatic waves

= Monochromatic waves have a harmonic
(sine, cosine) time dependence:

u(r,t)= a(?)COS[Zm/t + qp(?)]

a(r): Amplitude | V.m-1
@(T): Phase (in radians) (determined by initial conditions)

v (nu) : Frequency (Hz)

w (omega) : Angular frequency (in rads™) = 2xav



-2 Wave Optics: monochromatic waves

* |t Is convenient to use a complex
wavefunction function instead:

U(F.t) = a(7 )e>™ 7]

* From above definition:
u(v,t)=RelU(7,t)| (Re = real part)
|

u(7,t) = E[U(;:,t) + U*(?,z)]



-2 Wave Optics: monochromatic waves

= Can be rewritten in the form:
U(r,t)=U(r)e”™
* The amplitude is now a complex function:
U(r)=a(r)e' "
= Helmholtz equation obtained (after
substitution into wave equation):

(V2 + kz)U(F )=0

k=--==— = wavenumber (m”)
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-2 Wave Optics: monochromatic waves

= Notes:

» The choice cos[2avt + ¢(7)]is arbitrary;
depends on the initial conditions

« sin|@(7)=2mvt] Would be also an acceptable
function

* Most optical phenomena are steady-
state (no time dependence): it is
therefore often customary to drop the
time factor or dependency: 2™V

11



-2 Wave Optics: monochromatic waves

= The optical intensity: 1(7) =|U(7)
* The intensity does not vary with time

» Surfaces of equal phase are called
wavefronts:

@(r)=constant

Typically: o(r)=2mq (q Is an integer)

12



I-3 Wave Optics: Elementary waves

* There are various possible solutions of
the Helmholtz equation in a
homogeneous medium:
 PLANE WAVE

« SPHERICAL WAVE

 PARAXIAL WAVES (GAUSSIAN BEAM -
OPTICAL RESONATOR)

13



-3 Wave Optics: Plane wave

= The Plane Wave with Complex amplltude
U(F)=Ae™", @(F) =
= Ais the complex envelope and k s the
wave vector, with k7 = k.x+k,y+kz=constant

= Equation describing parallel planes
separated by a distance of one
wavelength: 2

L=
k

14



= Can choose z axis in
the direction of k:

U=Ae™™
u(r,t)=\A

u(r,t)=A

-3

COS

COS

:2m/t —kz+arg{ A }]

-Zm/(t — E) + arg{A}]
i C

Wave Optics: Plane wave

/‘ k.r = constant

= c and A are the phase
velocity and wavelength

inthe medium: = ¢,

and A—A—

n n 15



I-3 Wave Optics: Spherical wave

= The complex amplitude is: U(”)=é€'””

"y i_s ’ghe radial distance from ﬁ%
orlglln | ) AP Q y

» Optical Intensity: "/ =72 k

» [f Ais real, ie arg{A} = 0, the

surfaces of equal phase: - 2mor rj+r;+r;=(27””)
define concentric spheres, ,_
separated by a distance of

= Large r —— becomes plane



I-3 Wave Optics: Spherical wave

= At points close to the z axis and far from
the origin:
* Paraboloidal wave: approximation for
behaviour between spherical and planar.

e At large z, behaviour is almost planar

* This is typically the behaviour of
paraxial waves (eg. the Gaussian beam
often found in laser systems)

17



u(0,0,2

-3 Wave Optics: Paraxial waves

Wavefronts normal are paraxial rays:

(el
'n’f’f‘“‘wﬁﬂ\ L . ég;e Gunl
| [ {Vm u _/:? 5in® 2 tand =&
] = i
TR ¥ ' :\\\:

Wavefunction of
paraxial wave at
points along the
Z axis

Wavefronts and
wavefront normals
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-3 Wave Optics: Paraxial waves

= To construct a paraxial wave: start with a
plane wave Ae-kz and modulate the complex
envelope A making it a slowly varying function
of r:

U(7)=A(F)e ™

A(r) variation with position is very small over
a distance of one A.

It is still approximately planar.

19



-3 Wave Optics: Paraxial waves

= Paraxial waves satisfy the paraxial
Helmholtz equation:

A
VZA- i2k§— =0
oz
9 9’
V2 = ~+—5 = Transverse Laplace operator
ox~ dy

» Most useful is the Gaussian beam
(mode of the spherical-mirror resonator)

20



Il -Electromagnetic Optics

= Light is an electromagnetic
phenomenon: carries electric £(7.1) and
magnetic fields H(7.1)

* These are vector waves: scalar wave

equation fails to explain electric and
magnetic effects induced by light

= Problem: how can we describe the
electromagnetic state of matter in the
presence of light?

21



Il -Electromagnetic Optics: Definitions

= New set of vectors is required to describe the
response of matter:
Electric current density |

Electric displacement (electric flux density) D

Magnetic displacement (magnetic induction) B

o density of free charges

= E, H, B, D, jand p are related by Maxwell’s
equations (set of 4 coupled PDE’s)

22



Il -Electromagnetic Optics: Definitions

= General solution of Maxwell’s equations
Is complicated (would provide
electromagnetic response of matter - D
and B - in the presence of E and H
fields)

= For harmonic fields and isotropic media,
relation between applied fields and
response is simple

23



Il -Electromagnetic Optics: In Vacuo

» ¢ = Electric permittivity or D =¢cE
dielectric constant

= u = magnetic permeability

* u~ 1 non-magnetic (most _
substances) b =uH

e u>1 paramagnetic
e u< 1 diamagnetic

» o = specific conductivity = >
e o negligibly small: insulators
(dielectrics)
e o not negligibly small: conductors

24



Il -Electromagnetic Optics: Definitions

* Previous set of equations describes the
response of matter in the presence of
weak fields.

* |inear response: 1st power of fields

= For strong fields (strength of the order
of valence electrons binding energies):
e Response is non linear

* Must include higher-order components of
the fields

25



Il -Electromagnetic Optics: Definitions

—_ —> —

sE+(s)2EE +(€ ), EEE + ...
eE +(€),E* +(¢),E’ + ...

D
D

* The laws of Optics must be modified
(Non-linear Optics, Bloembergen, 1965)
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Il -Electromagnetic Optics: In Medium

= Effects of the fields can be described
using “additive” relations:

D=¢,E+P
P = Polarization = Dipole moment/m®
B=u,H +uM

M = Magnetization = Magnetic moment/m®
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Il -Electromagnetic Optics: Definitions

* For weak fields, polarization and
magnetization are assumed to be
linearly proportional to the applied

fields:

P=xe E

x = electric susceptibility
D= SOE +X£OE = 50(1 +X)[«j
e=¢g,(1+x)

£ =i=(1+x)

r
80

relative permittivity

MOM = Moxmﬁ
X,, = Mmagnetic susceptibility

—

b= Moljl +Xm1u0[j] = (1 +Xm)ﬁ
U= Au“O(l-l_Xm)

u, == (1+x,)

0
relative permeability

28



Il -Electromagnetic Optics: Maxwell’s

Equations
Vxl_*?’:—,uﬁ Vxﬁ=g@+}'

ot ot
V-B=p V-B=0

" |[n optics, generally non-magnetic media
and no currents (M =0and j=0)

* The flow of electromagnetic energy is
given by the Poynting vector: 5 _ 7. g

29



Il -Electromagnetic Optics: Maxwell’s
Equations

* Most optical materials are dielectrics:
e L =linear :if Pis linearly related to E

* ND = non-dispersive: instantaneous
response: P at t is determined by E at t.

* H = homogeneous: relation between P and
E is independent of r

* | = Isotropic: relation between P and E is
independent of the direction of E. Medium
IS identical from all directions of space.

30



Il -Electromagnetic Optics: Maxwell’s
Equations

. Medlum is L, ND, H and I:
= xe,E;D=¢E; ¢ = eo(1+x)

= Each component of E, H satisfy
separately the wave equation (same as

wave optics):

1 9%u(r, t)—OWithc= 1 _ S

¢t ot (€M0)2 n

Vu(r, t)——

n=(i)é = (1+)*

€0
31



Il -Electromagnetic Optics: Maxwell’s
Equations - inhomogeneous medium

* Medium is L, ND, I, inhomogeneous
" (e.g. a graded-index optical fibre)

= The spatial variations of n=n(7) are small
over dlstances of a few wavelengths

(r)eE D= s(r)E

VE_ | IE -0
o(7)> 9’

32



Il -Electromagnetic Optics: Maxwell’s
Equations

= Medium is L, ND, H but anisotropic:
relation between P and E depends on the
direction of E

* P and E are not necessarily parallel:

e Dielectric properties described by an array of
(3x3) constants called the susceptibility tensor

33



Il -Electromagnetic Optics: Maxwell’s
Equations-Anisotropic medium

= Each component of P (or D) is given by:
P, = EgoXijEj
j
i,j=1,2,3 denotes x,y,z components

D,=Ye¢,E,
J

¢, components of electric permittivity tensor

Typically crystals with non cubic symmetries
are anisotropic media

34



Il -Electromagnetic Optics: Maxwell’s
Equations nonlinear medium

= The relation between P and E is non

—3

. — — — — —2
linear: P=w(E), eg. P=a E+a,E +a,E

= Maxwell’'s equations must be used to
derive a non-linear partial differential egn
~ 1 9*E 9P 0" W(E)
V’E - = Uy— =
2 g g T hT e
Basic equation of non linear optics

35



Il -Electromagnetic Optics: Elementary EM
waves

* The Transverse Electromagnetic (TEM)
Plane Wave (medium L,H,I):

E(7)=E e H(F)=H,e"*"

Mo)z
k (1) From Maxwell:(i) =:(wM°)=:(COM° )= (80 =1

0 K n n
Eta = (optical) impedance of medium

2
E,

n

(2) From Poynting: I =

36



lll-Polarisation of Light

= Polarisation = time course of the
direction of the electric field vector E(r,t)

= |[n paraxial optics, EM waves are
approximately TEM: E(r,t) lies in
transverse plane

* |[f medium is isotropic: wave is
elliptically polarized

37



llI-Polarisation of Light

= Polarisation plays an important role in
optics:

 Amount of reflected light depends on
polarisation state at the boundary (interface)

 Amount of light absorbed depends on state
of polarisation (dichroism)

* Refractive index of anisotropic materials
depends on polarisation state (see optical
devices - birefringent materials)

* Rotation of plane of polarisation of linearly
polarised light in presence of external

electric or magnetic field
38



llI-Polarisation of Light: polarisation
ellipse

o —i2av(t=2)

e E(z,t)=Re|Ae c

Monochromatic plane wave travelling
in Oz direction with velocity c

—_

* Complex envelope (amplitude): A=A x+A Y

_ —iQ, .
A =ae ™ A

_ _iqﬁy
y aye

39



llI-Polarisation of Light: polarisation
ellipse

» Polarisation = End point of E(z,t) =
location of points whose coordinates
are (E,, E): E(zt)=EX+E)

Defining 7 = 2m/(t—§)

E =a.cos(t+@,), E , =a,cos(t+¢, ), E =0

E . :
—~=cosT cos@, —sintT sing, etc..and g=¢, -,

a

X

40



llI-Polarisation of Light: polarisation

ellipse
= Equation of ellipse (conic):
2 2
E E E E
Ty S| || =2|—=—[cos@p=sin"@
a, a, a, a,
A \ /
25 The "tilt" W is obtained from:
y > 2a.a,cos@
x tan2W¥=——=——
(a, -a,)
v
< >

zax 41



llI-Polarisation of Light: polarisation
ellipse

The magnetic vector is also elliptically
polarised

At fixed value of z, E rotates at frequency (v)
nu in (x-y) plane tracing out an ellipse

At fixed t (snap shot): the location of the tip
follows a helical trajectory

State of polarisation determined by tilt (value
of psi) and ratio of major to minor axes

42



lll-Polarisation of Light: Polarisation

I\
‘h____l}
"

g

~ |
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"

S
U4

PLam N
4
’ ! K
’ ,' ’
£ 3 £ £
,l | ,l } 'l |
I 4 I 4 I J
’ ’ ’
I ’ I ’ 1 ’
i i i ’
5 5 i ’
\ \ ‘_~
-

Timecourse of tip
of E is an elliptical

helix:
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llI-Polarisation of Light:

polarisation ellipse
Right-Handed%EIIipticaIIy Polarised: sing>0
T

A% \ e
/ L (¥
/// \

?zO 0<?<:’Z—T

NI DD

: qz'rr W(?(%‘T ?:%E 2}(?(3”
Left-Handed Elliptically Polarised: singp<0 44




llI-Polarisation of Light: polarisation ellipse

* The nature of the polarisation can be
determined from:

Y _ ﬁei(fpﬁpy) _ ﬂe—lfp
Ex ax ax
Ey m ay . . .
= (-1)" —, as ellipse reduces to a straight line
a
X X

when g =ma (m=0,x1,+£2,..))

Linear polarisation also fora, ora, =0
45



llI-Polarisation of Light:
polarisation ellipse

e Circular Polarisation: the ellipse
degenerates into a circle if a,=a, =a, and

¢e=mmn/2 (M =x1, £3, £5,...)
E’+E =a,

e Using complex form:
Right - handed circularly polarized : a, =a, = m/2

Lett - handed circularly polarized : a, =a ¢ =-m/2

* JT
)

E
—=¢ =]
Ex



llI-Polarisation of Light:
Matrix Representation; Jones Vector

= A monochromatic plane wave is
completely determined by the
knowledge of the complex envelope A,

and Ay

= Can be represented in the form of a 2-
component column matrix -the Jones
vector: . 7

A

X

A

y 47

j -




llI-Polarisation of Light:
Jones Vector

= From J, one can calculate the total light
intensity: I=(\Ax\2 +‘Ay‘2)/277

» The orientation and shape of the
polarisation ellipse can be obtained

from:
a

Y

A

y

a

X

A

X

9=, -¢, =arg{A }-arg{A }

48



llI-Polarisation of Light:
Jones Vector

= Jones vectors for typical polarisations:
intensity is normalised so that:

Ax

(

o o

y

<

in X direction

X

making angle y

with x axis

>

ﬁ/
X
Linear Polarisation Lirfear Polarisation

“+la,[)=1and ¢, =0

y

N
Ny
E[(—)i]

Right(left) -handed

circular polarisation
49




llI-Polarisation of Light:

Jones Matrix
= Jones vectors J, and J, are orthogonal

iIf (inner product is 0):
‘71 .‘72* = (Ale;x +A1yA;y ) = O
= Any arbitrary Jones vector J, can be

analysed as a weighted superposition of
two orthogonal polarisations:

—

J=a,J, +a,/, J,,J, normalised to unity
a

,'052=.7'j; ‘71.‘71*=]2°‘7;=1

50



llI-Polarisation of Light: Jones Matrix

= Alinear optical system that maintains
the plane wave nature of light but alters
its polarisation can be represented by a
(2x2) Jones matrix T:

- A X - A X
1 = Al # T=(Tll le) # J2= A2
ly r,, T, 2y

|nput Wave Opt|Ca| System Output Wave

J,=TJ,

51



llI-Polarisation of Light: Jones Matrix

= Examples of Jones matrices:

1. The Linear Polariser:

r~(s o

2. The Wave Retarder:

T = (1 0 ) A= % = quarter - wave retarder
— -iA
0 e A = & = half - wave retarder

A2x = Alx
A, =Ae"

A
A

1x T

—_—

ly

3. The Polarisation Rotator:
cosf -sin0

(SinH cosO )

cos0,\ , (cos0,

(sin 0, )%(Sin 02)

6,=0+0, 52



lll-Polarisation of Light: Normal modes

= Normal modes of a polarisation system
are the states of polarisation that
remain unchanged when transmitted
through the system

= Normal modes = eigenvectors of T
matrix (2 modes)
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llI-Polarisation of Light: Normal modes

= Normal modes are orthogonal and form
a basis set (T is hermitian)

= Any input wave J = superposition of
normal modes: J=aJ, +a.,],

* The response can be easily evaluated
using:
TI=T(aJ, +a,), )=, 1), +a, 1), =, u J, +a,u,l,

= Problem: Find the Normal Modes

54



lll-Polarisation of Light: Example of hormal
modes
= Reflection and refraction of
monochromatic plane wave of arbitrary
polarisation incident at dielectric

boundary (n,,n,)
The normal modes (from Maxwell’s)

are the two linear polarisations:
N1

Te (transverse electric, parallel to the
boundary): sigma or s polarisation

55



IV-Crystal Optics

» Crystals are anisotropic media: electric
displacement vector D depends (possibly)
on all the components of applied E field.

= Each component of D can be written as:
D, =Ye,E, withi,j=12,3=1xy,z
J

¢ 1s a second - rank tensor : the permittivity tensor

Electric displacement D is the contraction of

a 2-tensor and a vector (tensor rank one): D =¢FE
56



IV-Crystal Optics
= Examples of anisotropic media

Isotropic CUBic _ :
Anisotropic
e e
s
N /_/\_’; \/
N\ 5 §ie
i e I ~ N\ e
TR 00
T R
E NG O 1
™ - =
(@) Gas, liquid, (Q) Polycrystalline (c) Crystalline (o( Liquid crystal
amorphous solid

(a) Completely isotropic: long and short-range disorder

(b) Short-range order, long-range disorder: average macroscopic
behaviour is isotropic

(c) Positional and orientational orders: anisotropic (except fcc lattices)

(d) Short-range disorder, long-range order: average macroscopic

: : . : 57
behaviour is anisotropic



IV-Crystal Optics

* There always exists a system of
coordinates in which ¢ has only diagonal

elements: €44, €55, €35

= This system defines the Principal Axes:
directions of space for which E and D are
parallel.

* The principal refractive indices are:

1 1 1

g |2 g, |2 L
_ 1 _ 2 _ 3
nl_( ) nz_( ) n3_( )
80 80 80
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IV-Crystal Optics

= Anisotropy leads to birefringence: phase
velocity of an optical beam clearly
depends on the direction of polarisation of
its E vector.

* Three types of crystals:
e Uniaxial: n;=n, = n, (ordinary index), n;=n
(extraordinary index) calcite, quartz
 Biaxial: ny, n,, n; are all different.

e

e Isotropic n,=n,=n,

59



IV-Crystal Optics

= Geometrical construction that completely
describes the optical properties: it specifies
the values of the Principal refractive indices
and the directions of the Principal axes.

» This is called the Index Ellipsoid. It is the

surface of equation:

.X2 yz ZZ
St ot
. n, nj

=1

X,y,Z . principal axes

n,,n,,n,: principal indices .



* x.y.7are the Principal axes and
n,, ii,. 0, are the prmcipal refractive

indices of the crystal.

*  [tis the surface of equation:

|'he Index Ellipsoid

- =1
Fd
|
|
'I
-
.IFF
M“-—-—.,_
'| g
\ gl .
l!
__..l,-n
L]
II-
ll.
,.-‘"-{ I".
a"'-"f”— Il.\i
” W
S

i,

-

'

— e

e
-

IV-Crystal Optics

Index ellipsoid is
an ellipsoid of
revolution for
uniaxial crystals

Index ellipsoid is a
sphere for cubic
crystal

Z is called optic
axis for uniaxial
crystals
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IV-Crystal Optics

» Propagation of plane EM waves (linearly
polarised) along one of Principal axes:

what are the normal mode
X A

= K
ﬂ
>

S7?

Linear polarisation
along x or y directions:
Wave travels at phase
velocity c,/n, or (cy/n,)
without change of
polarisation.

‘D;=¢4E, (Dy=¢,E,)

If k is along Oz, the Normal modes are the linearly
polarised waves in the x and y directions respectively |,



= |f

IS In X-y plane making

a
"

IV-Crystal Optics
k is along Oz, but E

A

y

ngle 6 with Ox -
esulting polarisation?
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IV-Crystal Optics

* [fkis along Oz, but E is v 4
In X-y plane making angle
0 with Ox E ’

* Traveling wave is a sum >
of the normal modes: x z
each travels at (c,/n,)
and (c,/n,) respectively *The output wave is

_ elliptically polarised.

* The phase difference
after a distance d *Crystal acts as a
travelled through the wave retarder
crystal: 2T -Retardation plates

Q= (n2 —-n )d are polarisation state

A converters
64



IV-Crystal Optics

Propagation in any arbitrary direction (take
the case of uniaxial crystals only): k makes
angle 6 with respect to Oz (optic axis)

The normal modes are linearly polarised and
orthogonal directions OA and OB (next slide).

They form the semi-axes of the Index Ellipse
and define the Ordinary (Direction OB) and
Extraordinary (Dir. OA) waves respectively

O (Ordinary) wave travels at c,/n,, E wave
travels at c,/n(0) (uniaxial crystal).

Simple geometry is used to calculate n(0)

65



Index Ellise (he normal modes are. 4

IV-Crystal Optics

MMME )
P~ Sin(0) = z/(n,(0))
Sin(90 — 0) = Cos(0) = y/(ny(0))

The Index Ellipse for uniaxial
crystals

Equation of ellipse

AN >
2 2
y < 1 AP4/QElec 66
y T2 =
e

ng, n



IV-Crystal Optics

= For 6 =0 (k along z), n,=n_(0) so that
there is no birefringent behaviour
(Hence the name uniaxial).

= A Retardation plate has its optic axis in
the plane of the plate surface. The
desired state of polarisation is obtained
by adjusting the thickness (see p.64)
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V POLARIZATION DEVICES:
POLARIZERS

= Linear polarizer:

e Transmits components of E field along
the direction of its transmission axis

* Blocks the orthogonal component

e Can be achieved by:

- Dichroic materials (selective absorption);
Polaroid sheet

- Selective reflection from isotropic media;
Brewster’s angle

- Selective reflection/refraction in anisotropic
68



V POLARIZERS: POLARIZING
BEAMSPLITTERS

= Ordinary and extraordinary waves
refract at different angles Iin
anisotropic crystal: polarized light can
be obtained from unpolarized light.

= Typically two cemented prisms made
of uniaxial materials with different

orientations:

69



V POLARIZERS: POLARIZING

BEAMSPLITTERS
s @ - F-y
) L
S, Y S A 1 T
| . 1 sl N
ic | a‘;ilsc@ |
op s =
Wollaston Rochon Glan-Thompson
prism prism prism

O-ray is totally internally
reflected at cement
interface 70



V POLARIZERS: Wave Retarders

= Convert one polarisation into another

= Normal modes are linearly polarised
along the fast nr and slow n, axes.

= Constructed from anisotropic
materials in the form of plates: light is
made to travel along one of the
principal axis

= Retardation is directly proportional to
plate thickness: | _ 2ﬂ(nf —ns)d

71



V POLARIZERS: Wave Retarders

» Retardation is directly proportional to
the thickness of the plate

» Retardation is inversely proportional
to the wavelength

= Thin sheet of mica:

* Indices: 1.599 and 1.594 at 633 nm (He-
Ne laser) —TI'/d=15.8 rad/mm

* Sheet of 63.3 microns yields I' = 7 rad

72



V Wave Retarders: Light intensity
control

¥ -0
A
P larize S ch irder U/ p slarizer ; i

» Wave retarder placed between 2 cross-polarisers whose
axes are at 45 deg. with respect to the axes of the
retarder.

» |[ntensity transmittance of thls device is:
I =sin*(I'/2)

* Intensity can be changed by altering the retardatlon (see
Electro-Optics) via use of electro-optic anlsotroplc crystals

=2\
:«
-1
\ J‘:
[.___.._..-
j \ -
4\?\*'2‘,‘.
Transmittance

- B — -
0 1 27 3m 4rx
Retardation I”

Polarization
ellipses




