Chapter 1

I Wave Optics
II Electromagnetic Optics
III Polarization
IV Crystal Optics
V Polarization devices

I-1 Wave Optics: definitions

- From experimental evidence: light propagates in the form of waves
- Light wave (vibration) = scalar wave = wavefunction
- This description accounts for a large number of optical phenomena
- Nature of light remains unspecified.

I-1 Wave Optics: definitions

- Wave travels in a homogeneous, nonabsorbing medium with phase velocity c (wave speed)
- In vacuum, subscript 0 (zero) is used,e.g.,

$$
c_{0}, \mu_{0}, \varepsilon_{0}
$$

- The index of refraction defined as:

$$
n=\frac{c_{0}}{c}
$$

I-1 Wave Optics: definitions

- Wavefunction is a real function of position - defined by position vector \vec{r} and time $t: u(\vec{r}, t)$
- Wavefunction satisfies the wave equation:

$$
\nabla^{2} u(r, t)-\frac{1}{c^{2}} \frac{\partial^{2} u(r, t)}{\partial t^{2}}=0
$$

- Principle of superposition applies:

$$
u(\vec{r}, t)=u_{1}(\vec{r}, t)+u_{2}(\vec{r}, t)
$$

I-1 Wave Optics: definitions

- OPTICAL INTENSITY is the optical power per unit surface area (W.cm-2). It is the measurable quantity
- It is proportional to the time average of $u^{2}(\vec{r}, t)$

$$
I(\vec{r}, t)=2\left\langle u^{2}(\vec{r}, t)\right\rangle_{\Delta t}
$$

- Δt is taken over many light cycles......

I-1 Wave Optics: definitions

- OPTICAL POWER P = power (W) flowing into an area A normal to the direction of propagation:

$$
P(t)=\int_{A} I(\vec{r}, t) d A
$$

- OPTICAL ENERGY: time integral of optical power over the time interval

$$
P=\int_{\Delta t} P(t) d t
$$

I-1 Wave Optics: definitions

- FLUENCE = Optical energy per unit surface area ($\mathrm{J.cm}^{-2}$). Commonly specified for laser light at the focus of a converging lens.
- Photodetectors:
- Photoelectric detectors: photon releases an electron (photocurrent). Photodiode (p-i-n), Schottky diodes (metal-semiconductors), Photomultiplier tubes. Sensitive to intensity of incident light
- Conversion of photon energy into heat: Power meters. Temperature rise is measured with a thermopile. Sensitive to total power absorbed

I-2 Wave Optics: monochromatic waves

- Monochromatic waves have a harmonic (sine, cosine) time dependence:

$$
u(\vec{r}, t)=a(\vec{r}) \cos [2 \pi v t+\varphi(\vec{r})]
$$

$a(\vec{r})$: Amplitude \quad V. m^{-1}
$\varphi(\overrightarrow{\mathrm{r}})$: Phase (in radians) (determined by initial conditions)
$v(\mathrm{nu})$: Frequency (Hz)
ω (omega) : Angular frequency (in $\left.\operatorname{rads}^{-1}\right)=2 \pi \nu$

I-2 Wave Optics: monochromatic waves

- It is convenient to use a complex wavefunction function instead:

$$
U(\vec{r}, t)=a(\vec{r}) e^{i[2 \pi v t+\varphi(\vec{r})]}
$$

- From above definition:

$$
\begin{aligned}
& u(\vec{r}, t)=\operatorname{Re}[U(\vec{r}, t)](\operatorname{Re}=\text { real part }) \\
& u(\vec{r}, t)=\frac{1}{2}\left[U(\vec{r}, t)+U^{*}(\vec{r}, t)\right]
\end{aligned}
$$

I-2 Wave Optics: monochromatic waves

- Can be rewritten in the form:

$$
U(\vec{r}, t)=U(\vec{r}) e^{2 \pi i v t}
$$

- The amplitude is now a complex function:

$$
U(\vec{r})=a(\vec{r}) e^{i \varphi(\vec{r})}
$$

- Helmholtz equation obtained (after substitution into wave equation):

$$
\begin{aligned}
& \left(\nabla^{2}+k^{2}\right) U(\vec{r})=0 \\
& k=\frac{2 \pi}{\lambda}=\frac{2 \pi v}{c}=\text { wavenumber }\left(\mathrm{m}^{-1}\right)
\end{aligned}
$$

I-2 Wave Optics: monochromatic waves

- Notes:
- The choice $\cos [2 \pi v t+\varphi(\vec{r})]$ is arbitrary; depends on the initial conditions
- $\sin [\varphi(\vec{r})-2 \pi v t]$ Would be also an acceptable function
- Most optical phenomena are steadystate (no time dependence): it is therefore often customary to drop the time factor or dependency: $e^{2 \pi i v t}$

I-2 Wave Optics: monochromatic waves

- The optical intensity: $I(\vec{r})=|U(\vec{r})|^{2}$
- The intensity does not vary with time
- Surfaces of equal phase are called wavefronts:

$$
\begin{aligned}
& \varphi(\vec{r})=\text { constant } \\
& \text { Typically : } \varphi(\vec{r})=2 \pi q(\mathrm{q} \text { is an integer })
\end{aligned}
$$

I-3 Wave Optics: Elementary waves

- There are various possible solutions of the Helmholtz equation in a homogeneous medium:
- PLANE WAVE
- SPHERICAL WAVE
- PARAXIAL WAVES (GAUSSIAN BEAM OPTICAL RESONATOR)

I-3 Wave Optics: Plane wave

- The Plane Wave with complex amplitude:

$$
U(\vec{r})=A e^{-i \vec{k} \cdot \vec{r}}, \varphi(\vec{r})=\vec{k} \cdot \vec{r}
$$

- A is the complex envelope and k is the wave vector, with $\vec{k} \cdot \vec{r}=k_{x} x+k_{y} y+k_{z} z=$ constant
- Equation describing parallel planes separated by a distance of one wavelength:

$$
\lambda=\frac{2 \pi}{k}
$$

I-3 Wave Optics: Plane wave

- Can choose z axis in the direction of k :
$U=A e^{-i k z}$
$u(\vec{r}, t)=|A| \cos [2 \pi v t-k z+\arg \{A\}]$
$u(\vec{r}, t)=|A| \cos \left[2 \pi v\left(t-\frac{z}{c}\right)+\arg \{A\}\right]$

- c and λ are the phase velocity and wavelength in the medium:

$$
c=\frac{c_{0}}{n} \text { and } \lambda=\frac{\lambda_{0}}{n}
$$

I-3 Wave Optics: Spherical wave

- The complex amplitude is: $U(r)=\frac{A}{r} e^{-i l r}$
- r is the radial distance from origin
- Optical Intensity: $I(r)=\frac{|A|^{2}}{r^{2}}$
- If A is real, ie $\arg \{A\}=0$, the surfaces of equal phase: $k r=2 \pi n$ or $r_{x}^{2}+r_{y}^{2}+r_{z}^{2}=\left(\frac{2 \pi n}{k}\right)^{2}$ define concentric spheres, 2π separated by a distance of $\frac{2 \pi}{k}$
- Large $r \longrightarrow$ becomes plane

I-3 Wave Optics: Spherical wave

- At points close to the z axis and far from the origin:
- Paraboloidal wave: approximation for behaviour between spherical and planar.
- At large z, behaviour is almost planar
- This is typically the behaviour of paraxial waves (eg. the Gaussian beam often found in laser systems)

I-3 Wave Optics: Paraxial waves

$u(0,0,0$, Wavefronts normal are paraxial rays:

Wavefunction of paraxial wave at points along the z axis

Wavefronts and wavefront normals

I-3 Wave Optics: Paraxial waves

- To construct a paraxial wave: start with a plane wave $A e^{-i k z}$ and modulate the complex envelope A making it a slowly varying function of r :

$$
U(\vec{r})=A(\vec{r}) e^{-i k z}
$$

$A(\vec{r})$ variation with position is very small over a distance of one λ.

It is still approximately planar.

I-3 Wave Optics: Paraxial waves

- Paraxial waves satisfy the paraxial Helmholtz equation:

$$
\begin{aligned}
& \nabla_{T}^{2} A-i 2 k \frac{\partial A}{\partial z}=0 \\
& \nabla_{T}^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}} \equiv \text { Transverse Laplace operator }
\end{aligned}
$$

- Most useful is the Gaussian beam (mode of the spherical-mirror resonator)

II -Electromagnetic Optics

- Light is an electromagnetic phenomenon: carries electric $\vec{E}(\vec{r}, t)$ and magnetic fields $\vec{H}(\vec{r}, t)$
- These are vector waves: scalar wave equation fails to explain electric and magnetic effects induced by light
- Problem: how can we describe the electromagnetic state of matter in the presence of light?

II -Electromagnetic Optics: Definitions

- New set of vectors is required to describe the response of matter:

Electric current density \vec{j}
Electric displacement (electric flux density) $\overrightarrow{\mathrm{D}}$
Magnetic displacement (magnetic induction) \vec{B} ρ density of free charges

- E, H, B, D, j and ρ are related by Maxwell's equations (set of 4 coupled PDE's)

II -Electromagnetic Optics: Definitions

- General solution of Maxwell's equations is complicated (would provide electromagnetic response of matter - D and B - in the presence of E and H fields)
- For harmonic fields and isotropic media, relation between applied fields and response is simple

II -Electromagnetic Optics: In Vacuo

- $\varepsilon=$ Electric permittivity or dielectric constant

$$
\vec{D}=\varepsilon \vec{E}
$$

- $\mu=$ magnetic permeability
- $\mu \sim 1$ non-magnetic (most substances)

$$
\vec{B}=\mu \vec{H}
$$

- $\mu>1$ paramagnetic
- $\mu<1$ diamagnetic
- $\sigma=$ specific conductivity
- o negligibly small: insulators $\vec{j}=\sigma \vec{E}$ (dielectrics)
- σ not negligibly small: conductors

II -Electromagnetic Optics: Definitions

- Previous set of equations describes the response of matter in the presence of weak fields.
- Linear response: $1^{\text {st }}$ power of fields
- For strong fields (strength of the order of valence electrons binding energies):
- Response is non linear
- Must include higher-order components of the fields

II -Electromagnetic Optics: Definitions

$$
\begin{aligned}
& \vec{D}=\varepsilon \vec{E}+(\varepsilon)_{2} \vec{E} \vec{E}+(\varepsilon)_{3} \vec{E} \vec{E} \vec{E}+\ldots \\
& \vec{D}=\varepsilon \vec{E}+(\varepsilon)_{2} \vec{E}^{2}+(\varepsilon)_{3} \vec{E}^{3}+\ldots
\end{aligned}
$$

- The laws of Optics must be modified (Non-linear Optics, Bloembergen, 1965)

II -Electromagnetic Optics: In Medium

- Effects of the fields can be described using "additive" relations:
$\vec{D}=\varepsilon_{0} \vec{E}+\vec{P}$
$\vec{P}=$ Polarization $=$ Dipole moment $/ \mathrm{m}^{3}$
$\vec{B}=\mu_{0} \vec{H}+\mu_{0} \vec{M}$
$\vec{M}=$ Magnetization $=$ Magnetic moment $/ \mathrm{m}^{3}$

II -Electromagnetic Optics: Definitions

- For weak fields, polarization and magnetization are assumed to be linearly proportional to the applied fields:

$$
\begin{aligned}
& \vec{P}=\chi \varepsilon_{0} \vec{E} \\
& \chi=\text { electric susceptibility } \\
& \vec{D}=\varepsilon_{0} \vec{E}+\chi \varepsilon_{0} \vec{E}=\varepsilon_{0}(1+\chi) \vec{E} \\
& \varepsilon=\varepsilon_{0}(1+\chi) \\
& \varepsilon_{r}=\frac{\varepsilon}{\varepsilon_{0}}=(1+\chi)
\end{aligned}
$$

relative permittivity

$$
\begin{aligned}
& \mu_{0} \vec{M}=\mu_{0} \chi_{m} \vec{H} \\
& \chi_{m}=\text { magnetic susceptibility } \\
& \vec{B}=\mu_{0} \vec{H}+\chi_{m} \mu_{0} \vec{H}=\mu_{0}\left(1+\chi_{m}\right) \vec{H} \\
& \mu=\mu_{0}\left(1+\chi_{m}\right) \\
& \mu_{r}=\frac{\mu}{\mu_{0}}=\left(1+\chi_{m}\right) \\
& \text { relative permeability }
\end{aligned}
$$

II -Electromagnetic Optics: Maxwell's

Equations

$$
\begin{aligned}
& \nabla \times \vec{E}=-\mu \frac{\partial \vec{H}}{\partial t} \\
& \nabla \cdot \vec{D}=\rho
\end{aligned}
$$

$$
\begin{aligned}
& \nabla \times \vec{H}=\varepsilon \frac{\partial \vec{E}}{\partial t}+\vec{j} \\
& \nabla \cdot \vec{B}=0
\end{aligned}
$$

- In optics, generally non-magnetic media and no currents ($\vec{M}=\overrightarrow{0}$ and $\vec{j}=\overrightarrow{0}$)
- The flow of electromagnetic energy is given by the Poynting vector: $\vec{P}=\vec{E} \times \vec{H}$

II -Electromagnetic Optics: Maxwell’s

Equations

- Most optical materials are dielectrics:
- L = linear : if P is linearly related to E
- ND = non-dispersive: instantaneous response: P at t is determined by E at t .
- $\mathrm{H}=$ homogeneous: relation between P and E is independent of r
- I = isotropic: relation between P and E is independent of the direction of E . Medium is identical from all directions of space.

II -Electromagnetic Optics: Maxwell’s Equations

- Medium is $\mathrm{L}, \mathrm{ND}, \mathrm{H}$ and I :

$$
\vec{P}=\chi \varepsilon_{0} \vec{E} ; \vec{D}=\varepsilon \vec{E} ; \varepsilon=\varepsilon_{0}(1+\chi)
$$

- Each component of E, H satisfy separately the wave equation (same as wave optics):

$$
\begin{aligned}
& \nabla^{2} u(r, t)-\frac{1}{c^{2}} \frac{\partial^{2} u(r, t)}{\partial t^{2}}=0 \text { with } c=\frac{1}{\left(\varepsilon \mu_{0}\right)^{2}}=\frac{c_{0}}{n} \\
& n=\left(\frac{\varepsilon}{\varepsilon_{0}}\right)^{\frac{1}{2}}=(1+\chi)^{\frac{1}{2}}
\end{aligned}
$$

II -Electromagnetic Optics: Maxwell’s Equations - inhomogeneous medium

- Medium is L, ND, I, inhomogeneous
- (e.g. a graded-index optical fibre)
- The spatial variations of $n=n(\vec{r})$ are small over distances of a few wavelengths

$$
\begin{aligned}
& \vec{P}=\chi(\vec{r}) \varepsilon_{0} \vec{E} ; \vec{D}=\varepsilon(\vec{r}) \vec{E} \\
& \nabla^{2} \vec{E}-\frac{1}{c(\vec{r})^{2}} \frac{\partial^{2} \vec{E}}{\partial t^{2}}=0
\end{aligned}
$$

II -Electromagnetic Optics: Maxwell’s Equations

- Medium is L, ND, H but anisotropic: relation between P and E depends on the direction of E
- P and E are not necessarily parallel:
- Dielectric properties described by an array of (3x3) constants called the susceptibility tensor

II -Electromagnetic Optics: Maxwell's Equations-Anisotropic medium

- Each component of P (or D) is given by:

$$
\begin{aligned}
& P_{i}=\sum_{j} \varepsilon_{0} \chi_{i j} E_{j} \\
& i, j=1,2,3 \text { denotes } x, y, z \text { components } \\
& D_{i}=\sum_{j} \varepsilon_{i j} E_{j}
\end{aligned}
$$

$\varepsilon_{i j}$ components of electric permittivity tensor

- Typically crystals with non cubic symmetries are anisotropic media

II -Electromagnetic Optics: Maxwell's Equations nonlinear medium

- The relation between P and E is non linear: $\vec{P}=\Psi(\vec{E})$, e.g. $\vec{P}=a_{1} \vec{E}+a_{2} \vec{E}^{2}+a_{3} \vec{E}^{3}$
- Maxwell's equations must be used to derive a non-linear partial differential eqn

$$
\nabla^{2} \vec{E}-\frac{1}{c^{2}} \frac{\partial^{2} \vec{E}}{\partial t^{2}}=\mu_{0} \frac{\partial^{2} \vec{P}}{\partial t^{2}}=\mu_{0} \frac{\partial^{2} \Psi(\vec{E})}{\partial t^{2}}
$$

Basic equation of non linear optics

II -Electromagnetic Optics: Elementary EM waves

- The Transverse Electromagnetic (TEM) Plane Wave (medium L,H,I):

$$
\vec{E}(\vec{r})=\vec{E}_{0} e^{-i \vec{k} \vec{r}} \vec{H}(\vec{r})=\vec{H}_{0} e^{-i \vec{k} \vec{r}}
$$

(1) From Maxwell: $\left(\frac{E_{0}}{\mathrm{H}_{0}}\right)=:=\left(\frac{\omega \mu_{0}}{\mathrm{k}}\right)=:=\left(\frac{c_{0} \mu_{0}}{\mathrm{n}}\right)=\frac{\left(\frac{\mu_{0}}{\varepsilon_{0}}\right)^{2}}{n}=\eta$

Eta $=$ (optical) impedance of medium
(2) From Poynting: $I=\frac{\left|E_{o}\right|^{2}}{\eta}$

III-Polarisation of Light

- Polarisation = time course of the direction of the electric field vector $E(r, t)$
- In paraxial optics, EM waves are approximately TEM: $E(r, t)$ lies in transverse plane
- If medium is isotropic: wave is elliptically polarized

III-Polarisation of Light

- Polarisation plays an important role in optics:
- Amount of reflected light depends on polarisation state at the boundary (interface)
- Amount of light absorbed depends on state of polarisation (dichroism)
- Refractive index of anisotropic materials depends on polarisation state (see optical devices - birefringent materials)
- Rotation of plane of polarisation of linearly polarised light in presence of external electric or magnetic field

III-Polarisation of Light: polarisation ellipse

- $\vec{E}(z, t)=\operatorname{Re}\left[\vec{A} e^{-i 2 \pi v\left(t-\frac{z}{c}\right.}\right]$

Monochromatic plane wave travelling in Oz direction with velocity c

- Complex envelope (amplitude): $\vec{A}=A_{x} \hat{x}+A_{y} \hat{y}$

$$
A_{x}=a_{x} e^{-i \varphi_{x}} ; A_{y}=a_{y} e^{-i \varphi_{y}}
$$

III-Polarisation of Light: polarisation ellipse

- Polarisation = End point of $E(z, t)=$ location of points whose coordinates are ($\mathrm{E}_{\mathrm{x}}, \mathrm{E}_{\mathrm{y}}$): $\vec{E}(z, t)=E_{x} \hat{x}+E_{y} \hat{y}$
Defining $\tau=2 \pi v\left(t-\frac{z}{c}\right)$
$E_{x}=a_{x} \cos \left(\tau+\varphi_{x}\right), E_{y}=a_{y} \cos \left(\tau+\varphi_{y}\right), E_{z}=0$
$\frac{E_{x}}{a_{x}}=\cos \tau \cos \varphi_{x}-\sin \tau \sin \varphi_{x}$ etc...and $\varphi=\varphi_{y}-\varphi_{x}$

III-Polarisation of Light: polarisation ellipse

- Equation of ellipse (conic):

III-Polarisation of Light: polarisation ellipse

- The magnetic vector is also elliptically polarised
- At fixed value of \mathbf{z}, E rotates at frequency (v) nu in ($x-y$) plane tracing out an ellipse
- At fixed t (snap shot): the location of the tip follows a helical trajectory
- State of polarisation determined by tilt (value of psi) and ratio of major to minor axes

III-Polarisation of Light: Polarisation

Timecourse of tip of E is an elliptical helix:

III-Polarisation of Light: polarisation ellipse

Right-Handed Elliptically Polarised: $\sin \varphi>0$

$\varphi=0$

$$
0<\varphi<\frac{\pi}{2}
$$

$\phi=\frac{\pi}{2}$
$\frac{\pi}{2}<\varphi<\pi$

$\varphi=\pi$

$\varphi=\frac{3 \pi}{2}$

Left-Handed Elliptically Polarised: $\sin \varphi<0$

III-Polarisation of Light: polarisation ellipse

- The nature of the polarisation can be determined from:

$$
\frac{E_{y}}{E_{x}}=\frac{a_{y}}{a_{x}} e^{i\left(\varphi_{x}-\varphi_{y}\right)}=\frac{a_{y}}{a_{x}} e^{-i \varphi}
$$

- Linear Polarisation:

$$
\begin{aligned}
& \frac{E_{y}}{E_{x}}=(-1)^{m} \frac{a_{y}}{a_{x}}, \text { as ellipse reduces to a straight line } \\
& \text { when } \varphi=m \pi(m=0, \pm 1, \pm 2, \ldots) \\
& \text { Linear polarisation also for } a_{x} \text { or } a_{y}=0
\end{aligned}
$$

III-Polarisation of Light: polarisation ellipse

- Circular Polarisation: the ellipse degenerates into a circle if $\mathrm{a}_{\mathrm{x}}=\mathrm{a}_{\mathrm{y}}=\mathrm{a}_{0}$ and $\varphi=m \pi / 2(m= \pm 1, \pm 3, \pm 5, \ldots)$

$$
E_{x}^{2}+E_{y}^{2}=a_{0}^{2}
$$

- Using complex form:

Right - handed circularly polarized : $a_{x}=a_{y}, \varphi=\pi / 2$

$$
\frac{E_{y}}{E_{x}}=e^{-i \frac{\pi}{2}}=-i
$$

Left - handed circularly polarized : $a_{x}=a_{y}, \varphi=-\pi / 2$

$$
\frac{E_{y}}{E_{x}}=e^{i \frac{\pi}{2}}=i
$$

III-Polarisation of Light:

Matrix Representation; Jones Vector

- A monochromatic plane wave is completely determined by the knowledge of the complex envelope A_{x} and A_{y}
- Can be represented in the form of a 2component column matrix -the Jones vector:

$$
\vec{J}=\left[\begin{array}{c}
A_{x} \\
A_{y}
\end{array}\right]
$$

III-Polarisation of Light: Jones Vector

- From J, one can calculate the total light intensity: $\quad I=\left(\left|A_{x}\right|^{2}+\left|A_{y}\right|^{2}\right) / 2 \eta$
- The orientation and shape of the polarisation ellipse can be obtained from:

$$
\frac{a_{y}}{a_{x}}=\frac{\left|A_{y}\right|}{\left|A_{x}\right|} ; \varphi=\varphi_{y}-\varphi_{x}=\arg \left\{A_{y}\right\}-\arg \left\{A_{x}\right\}
$$

III-Polarisation of Light: Jones Vector

- Jones vectors for typical polarisations: intensity is normalised so that:

$$
\left(\left|A_{x}\right|^{2}+\left|A_{y}\right|^{2}\right)=1 \text { and } \varphi_{x}=0
$$

Linear Polarisation in x direction

Linear Polarisation making angle ψ with x axis

Right(left)-handed circular polarisation

III-Polarisation of Light: Jones Matrix

- Jones vectors J_{1} and J_{2} are orthogonal if (inner product is 0):

$$
\vec{J}_{1} \cdot \vec{J}_{2}^{*}=\left(A_{1 x} A_{2 x}^{*}+A_{1 y} A_{2 y}^{*}\right)=0
$$

- Any arbitrary Jones vector J, can be analysed as a weighted superposition of two orthogonal polarisations:

$$
\begin{array}{ll}
\vec{J}=\alpha_{1} \vec{J}_{1}+\alpha_{2} \vec{J}_{2} & \vec{J}_{1}, \vec{J}_{2} \text { normalised to unity } \\
\alpha_{1}=\vec{J} \cdot \vec{J}_{1}^{*} ; \alpha_{2}=\vec{J} \cdot \vec{J}_{2}^{*} & \vec{J}_{1} \bullet \vec{J}_{1}^{*}=\vec{J}_{2} \bullet \vec{J}_{2}^{*}=1
\end{array}
$$

III-Polarisation of Light: Jones Matrix

- A linear optical system that maintains the plane wave nature of light but alters its polarisation can be represented by a (2×2) Jones matrix T:

$$
\vec{J}_{1}=\left[\begin{array}{l}
A_{1 x} \\
A_{1 y}
\end{array}\right] \longrightarrow
$$

Input Wave

Optical System

$$
\vec{J}_{2}=T \vec{J}_{1}
$$

$$
\rightarrow \vec{J}_{2}=\left[\begin{array}{l}
A_{21} \\
A_{21}
\end{array}\right]
$$

Output Wave

III-Polarisation of Light: Jones Matrix

- Examples of Jones matrices:

1. The Linear Polariser:
$T=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$

2. The Wave Retarder :

$$
T=\left(\begin{array}{cc}
1 & 0 \\
0 & \mathrm{e}^{-i \Delta}
\end{array}\right) \quad \begin{aligned}
& \Delta=\frac{\pi}{2}=\text { quarter }- \text { wave retarder } \\
& \Delta=\pi=\text { half }- \text { wave retarder }
\end{aligned}
$$

$$
\binom{A_{1 x}}{A_{1 y}} \xrightarrow{T}\binom{A_{2 x}=A_{1 x}}{A_{2 y}=A_{1 y} \mathrm{e}^{-\mathrm{i} \Delta}}
$$

3. The Polarisation Rotator:

$$
\begin{aligned}
& T=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \\
& \binom{\cos \theta_{1}}{\sin \theta_{1}} \xrightarrow{T}\binom{\cos \theta_{2}}{\sin \theta_{2}} \\
& \theta_{2}=\theta+\theta_{1}
\end{aligned}
$$

III-Polarisation of Light: Normal modes

- Normal modes of a polarisation system are the states of polarisation that remain unchanged when transmitted through the system
- Normal modes = eigenvectors of T matrix (2 modes)

$$
\mathbf{T} \vec{J}=\mu \vec{J}
$$

III-Polarisation of Light: Normal modes

- Normal modes are orthogonal and form a basis set (T is hermitian)
- Any input wave $\mathrm{J}=$ superposition of normal modes: $\overrightarrow{\mathbf{J}}=\alpha_{1} \overline{\mathbf{J}}_{1}+\alpha_{2} \overline{\mathbf{J}}_{2}$
- The response can be easily evaluated using:

$$
\mathbf{T} \overrightarrow{\mathbf{J}}=\mathbf{T}\left(\alpha_{1} \overrightarrow{\mathbf{J}}_{1}+\alpha_{2} \overrightarrow{\mathbf{J}}_{2}\right)=\alpha_{1} \mathbf{T} \overrightarrow{\mathbf{J}}_{1}+\alpha_{2} \mathbf{\mathbf { T }} \overrightarrow{\mathbf{J}}_{2}=\alpha_{1} \mu_{1} \overrightarrow{\mathbf{J}}_{1}+\alpha_{2} \mu_{2} \overrightarrow{\mathbf{J}}_{2}
$$

- Problem: Find the Normal Modes

III-Polarisation of Light: Example of normal modes

- Reflection and refraction of monochromatic plane wave of arbitrary polarisation incident at dielectric boundary ($\mathrm{n}_{1}, \mathrm{n}_{2}$)

The normal modes (from Maxwell's)
 are the two linear polarisations:
T_{E} (transverse electric, parallel to the boundary): sigma or s polarisation
(Transverse magnetic parallel to the plane of incidence): parallel or pi polarisation

IV-Crystal Optics

- Crystals are anisotropic media: electric displacement vector D depends (possibly) on all the components of applied E field.
- Each component of D can be written as:

$$
D_{i}=\sum_{j} \varepsilon_{i j} E_{j} \text { with } i, j=1,2,3 \equiv x, y, z
$$

$\tilde{\varepsilon}$ is a second - rank tensor : the permittivity tensor

Electric displacement \vec{D} is the contraction of
a 2 - tensor and a vector (tensor rank one) : $\vec{D}=\tilde{\varepsilon} \vec{E}$

IV-Crystal Optics

- Examples of anisotropic media

(a) Gas, liquid, amorphous solid

(b) Polycrystalline

(c) Crystalline

(d) Liquid crystal
(a) Completely isotropic: long and short-range disorder
(b) Short-range order, long-range disorder: average macroscopic behaviour is isotropic
(c) Positional and orientational orders: anisotropic (except fcc lattices)
(d) Short-range disorder, long-range order: average macroscopic behaviour is anisotropic

IV-Crystal Optics

- There always exists a system of coordinates in which ε has only diagonal elements: $\varepsilon_{11}, \varepsilon_{22}, \varepsilon_{33}$
- This system defines the Principal Axes: directions of space for which E and D are parallel.
- The principal refractive indices are:

$$
n_{1}=\left(\frac{\varepsilon_{1}}{\varepsilon_{0}}\right)^{\frac{1}{2}} \quad n_{2}=\left(\frac{\varepsilon_{2}}{\varepsilon_{0}}\right)^{\frac{1}{2}} \quad n_{3}=\left(\frac{\varepsilon_{3}}{\varepsilon_{0}}\right)^{\frac{1}{2}}
$$

IV-Crystal Optics

- Anisotropy leads to birefringence: phase velocity of an optical beam clearly depends on the direction of polarisation of its E vector.
- Three types of crystals:
- Uniaxial: $\mathrm{n}_{1}=\mathrm{n}_{2}=\mathrm{n}_{\mathrm{o}}$ (ordinary index), $\mathrm{n}_{3}=\mathrm{n}_{\mathrm{e}}$ (extraordinary index) calcite, quartz
- Biaxial: n_{1}, n_{2}, n_{3} are all different.
- Isotropic $\mathrm{n}_{1}=\mathrm{n}_{2}=\mathrm{n}_{3}$

IV-Crystal Optics

- Geometrical construction that completely describes the optical properties: it specifies the values of the Principal refractive indices and the directions of the Principal axes.
- This is called the Index Ellipsoid. It is the surface of equation:

$$
\begin{aligned}
& \frac{x^{2}}{n_{1}^{2}}+\frac{y^{2}}{n_{2}^{2}}+\frac{z^{2}}{n_{3}^{2}}=1 \\
& x, y, z: \text { principal axes } \\
& \mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}: \text { principal indices }
\end{aligned}
$$

1. Index ellipsoid is an ellipsoid of revolution for uniaxial crystals
2. Index ellipsoid is a sphere for cubic crystal
3. z is called optic axis for uniaxial crystals

IV-Crystal Optics

- Propagation of plane EM waves (linearly polarised) along one of Principal axes: what are the normal modes?

-Linear polarisation along x or y directions: Wave travels at phase velocity $\mathrm{c}_{0} / \mathrm{n}_{1}$ or $\left(\mathrm{c}_{0} / \mathrm{n}_{2}\right)$ without change of polarisation.

$$
\cdot D_{1}=\varepsilon_{1} E_{1}\left(D_{2}=\varepsilon_{2} E_{2}\right)
$$

If k is along Oz , the Normal modes are the linearly polarised waves in the x and y directions respectively

IV-Crystal Optics

- If k is along Oz , but E is in x - y plane making angle θ with $O x$
- Resulting polarisation?

IV-Crystal Optics

- If k is along $O z$, but E is in x-y plane making angle θ with Ox
- Traveling wave is a sum of the normal modes: each travels at $\left(\mathrm{c}_{0} / \mathrm{n}_{1}\right)$ and $\left(\mathrm{c}_{0} / \mathrm{n}_{2}\right)$ respectively
- The phase difference after a distance d travelled through the crystal:

$$
\varphi=\frac{2 \pi}{\lambda_{0}}\left(n_{2}-n_{1}\right) d
$$

-The output wave is elliptically polarised.
-Crystal acts as a wave retarder
-Retardation plates are polarisation state converters

IV-Crystal Optics

- Propagation in any arbitrary direction (take the case of uniaxial crystals only): k makes angle θ with respect to Oz (optic axis)
- The normal modes are linearly polarised and orthogonal directions OA and OB (next slide).
- They form the semi-axes of the Index Ellipse and define the Ordinary (Direction OB) and Extraordinary (Dir. OA) waves respectively
- O (Ordinary) wave travels at $\mathrm{c}_{0} / \mathrm{n}_{\mathrm{O}}$, E wave travels at $\mathrm{c}_{0} / \mathrm{n}_{\mathrm{e}}(\theta)$ (uniaxial crystal).
- Simple geometry is used to calculate $\mathrm{n}_{\mathrm{e}}(\theta)$

IV-Crystal Optics

- For $\theta=0$ (k along z), $n_{0}=n_{e}(\theta)$ so that there is no birefringent behaviour (Hence the name uniaxial).
- A Retardation plate has its optic axis in the plane of the plate surface. The desired state of polarisation is obtained by adjusting the thickness (see p.64)

V POLARIZATION DEVICES: POLARIZERS

- Linear polarizer:
- Transmits components of E field along the direction of its transmission axis
- Blocks the orthogonal component
- Can be achieved by:
- Dichroic materials (selective absorption); Polaroid sheet
- Selective reflection from isotropic media; Brewster's angle
- Selective reflection/refraction in anisotropic

V POLARIZERS: POLARIZING BEAMSPLITTERS

- Ordinary and extraordinary waves refract at different angles in anisotropic crystal: polarized light can be obtained from unpolarized light.
- Typically two cemented prisms made of uniaxial materials with different orientations:
- Wollaston prism
- Rochon prism

V POLARIZERS: POLARIZING BEAMSPLITTERS

Wollaston prism

Rochon prism

Glan-Thompson prism
O-ray is totally internally reflected at cement interface

V POLARIZERS: Wave Retarders

- Convert one polarisation into another
- Normal modes are linearly polarised along the fast n_{f} and slow n_{s} axes.
- Constructed from anisotropic materials in the form of plates: light is made to travel along one of the principal axis
- Retardation is directly proportional to plate thickness: $\Gamma=\frac{2 \pi}{\lambda}\left(n_{f}-n_{s}\right) d$

V POLARIZERS: Wave Retarders

- Retardation is directly proportional to the thickness of the plate
- Retardation is inversely proportional to the wavelength
- Thin sheet of mica:
- Indices: 1.599 and 1.594 at 633 nm (HeNe laser) $\rightarrow \Gamma / d \approx 15.8 \mathrm{rad} / \mathrm{mm}$
- Sheet of 63.3 microns yields $\Gamma \approx \pi \mathrm{rad}$

V Wave Retarders: Light intensity control

- Wave retarder placed between 2 cross-polarisers whose axes are at 45 deg. with respect to the axes of the retarder.
- Intensity transmittance of this device is:

$$
I_{T}=\sin ^{2}(\Gamma / 2)
$$

- Intensity can be changed by altering the retardation (see Electro-Optics) via use of electro-optic anisotropic crystals

