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I-1 Wave Optics: definitions

! From experimental evidence: light 
propagates in the form of waves

! Light wave (vibration) = scalar wave = 
wavefunction

! This description accounts for a large 
number of optical phenomena

! Nature of light remains unspecified.
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€ 

n =
c0
c

I-1 Wave Optics: definitions

! Wave travels in a homogeneous, non-
absorbing medium with phase velocity c 
(wave speed)

! In vacuum, subscript 0 (zero) is 
used,e.g.,

! The index of refraction defined as:

€ 

c0,µ0 ,ε0



4

I-1 Wave Optics: definitions
! Wavefunction is a real function of 

position - defined by position vector    
and time   :  

! Wavefunction satisfies the wave 
equation: 

! Principle of superposition applies:

  

€ 

! r 

€ 

t   

€ 

u(! r ,t )

€ 

∇2u(r,t ) − 1
c 2
∂ 2u(r,t )
∂t 2

= 0

  

€ 

u( ! r ,t ) = u1(
! r ,t ) + u2(

! r ,t )
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I-1 Wave Optics: definitions
! OPTICAL INTENSITY is the optical power per 

unit surface area (W.cm-2). It is the 
measurable quantity

! It is proportional to the time average of

! Δt is taken over many light cycles……

  

€ 

u2(! r ,t )

  

€ 

I( ! r ,t ) = 2 u 2( ! r ,t )
Δt
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I-1 Wave Optics: definitions

! OPTICAL POWER P = power (W) 
flowing into an area A normal to the 
direction of propagation:

! OPTICAL ENERGY: time integral of 
optical power over the time interval

  

€ 

P(t) = I(! r ,t )dA
A∫

€ 

P = P(t)dt
Δt∫
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I-1 Wave Optics: definitions
! FLUENCE = Optical energy per unit surface 

area (J.cm-2). Commonly specified for laser 
light at the focus of a converging lens.

! Photodetectors:
• Photoelectric detectors: photon releases an 

electron (photocurrent). Photodiode (p-i-n), 
Schottky diodes (metal-semiconductors), 
Photomultiplier tubes. Sensitive to intensity of 
incident light

• Conversion of photon energy into heat: Power 
meters. Temperature rise is measured with a 
thermopile. Sensitive to total power absorbed
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I-2 Wave Optics: monochromatic waves

! Monochromatic waves have a harmonic 
(sine, cosine) time dependence:

  

€ 

u(
! 
r ,t ) = a(

! 
r )cos 2πνt +ϕ(

! 
r )[ ]

  

€ 

a(! r ) : Amplitude (in metres)
ϕ
! r ( ) :  Phase (in radians) (determined by  initial conditions)

ν (nu) :  Frequency (Hz)
ω (omega) :  Angular frequency (in rads-1 ) =  2πν

V.m-1
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I-2 Wave Optics: monochromatic waves
! It is convenient to use a complex 

wavefunction function instead:

! From above definition: 

  

€ 

U(! r ,t ) = a(! r )ei 2πνt +ϕ(
! 
r )[ ]

    

€ 

u(! r ,t ) = Re U(! r ,t)[ ] (Re =  real part)

u(! r ,t ) =
1
2

U(! r ,t) + U*(! r ,t)[ ]
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I-2 Wave Optics: monochromatic waves
! Can be rewritten in the form:

! The amplitude is now a complex function:

! Helmholtz equation obtained (after 
substitution into wave equation):

  

€ 

U(! r ,t ) = U(! r )e2πiνt

  

€ 

U(! r ) = a(! r )eiϕ (
! 
r )

    

€ 

∇2 + k 2( )U(! r ) = 0

k =
2π
λ

=
2πν

c
 =  wavenumber (m-1)
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I-2 Wave Optics: monochromatic waves

! Notes:
• The choice                        is arbitrary; 

depends on the initial conditions
•                      Would be also an acceptable 

function
! Most optical phenomena are steady-

state (no time dependence): it is 
therefore often customary to drop the 
time factor or dependency:                                

  

€ 

cos 2πνt +ϕ(
! 
r )[ ]

  

€ 

sin ϕ(! r ) − 2πνt[ ]

€ 

e2πiνt
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I-2 Wave Optics: monochromatic waves

! The optical intensity:
! The intensity does not vary with time
! Surfaces of equal phase are called 

wavefronts:  

  

€ 

I(! r ) = U(! r ) 2

    

€ 

ϕ(
! 
r ) = cons tan t

Typically :  ϕ(
! 
r ) = 2πq (q is an integer)
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I-3 Wave Optics: Elementary waves

! There are various possible solutions of 
the Helmholtz equation in a 
homogeneous medium:
• PLANE WAVE
• SPHERICAL WAVE
• PARAXIAL WAVES (GAUSSIAN BEAM - 

OPTICAL RESONATOR)
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I-3 Wave Optics: Plane wave

! The Plane Wave with complex amplitude:

! A is the complex envelope and k is the 
wave vector, with

! Equation describing parallel planes 
separated by a distance of one 
wavelength: 

    

€ 

U(! r ) = Ae−i
! 
k ⋅
! 
r , ϕ(! r ) =

! 
k ⋅ ! r 

  

€ 

! 
k ⋅
! 
r = kx x + ky y + kzz = cons tan t

€ 

λ =
2π
k
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I-3 Wave Optics: Plane wave
! Can choose z axis in 

the direction of k:

! c and λ are the phase 
velocity and wavelength 
in the medium:

€ 

I = A 2

  

€ 

U = Ae− ikz

u(
! 
r ,t ) = A cos 2πνt − kz + arg{ A}[ ]

u(
! 
r ,t ) = A cos 2πν (t − z

c
) + arg{ A}

% 

& ' 
( 

) * 

  

€ 

c =
c0
n

 and λ =
λ0
n
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I-3 Wave Optics: Spherical wave
! The complex amplitude is:
! r is the radial distance from 

origin
! Optical Intensity:
! If A is real, ie arg{A} = 0, the 

surfaces of equal phase:                 
define concentric spheres, 
separated by a distance of

! Large r         becomes plane

€ 

U(r) =
A
r
e− ikr

€ 

I(r) =
A 2

r2

€ 

  

€ 

kr = 2πn or rx
2 + ry

2 + rz
2 =

2πn
k

# 

$ 
% 

& 

' 
( 
2

€ 

2π
k
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! At points close to the z axis and far from 
the origin: 
• Paraboloidal wave: approximation for 

behaviour between spherical and planar.
• At large z, behaviour is almost planar

! This is typically the behaviour of 
paraxial waves (eg. the Gaussian beam 
often found in laser systems)

I-3 Wave Optics: Spherical wave
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I-3 Wave Optics: Paraxial waves
! Wavefronts normal are paraxial rays:

Wavefunction of 
paraxial wave at 
points along the 
z axis

Wavefronts and 
wavefront normals

u(0,0, z)
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I-3 Wave Optics: Paraxial waves
! To construct a paraxial wave: start with a 

plane wave Ae-ikz and modulate the complex 
envelope A making it a slowly varying function 
of r:

    

€ 

U(! r ) = A(! r )e− ikz

A(! r ) variation with position is very small over
a distance of one λ.
It is still approximately planar.
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! Paraxial waves satisfy the paraxial 
Helmholtz equation: 

! Most useful is the Gaussian beam 
(mode of the spherical-mirror resonator)

I-3 Wave Optics: Paraxial waves

€ 

∇T
2A− i2k∂A

∂z
= 0

∇T
2 =

∂ 2

∂x 2 +
∂ 2

∂y 2  ≡  Transverse Laplace operator
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! Light is an electromagnetic 
phenomenon: carries electric          and 
magnetic fields       

! These are vector waves: scalar wave 
equation fails to explain electric and 
magnetic effects induced by light

! Problem: how can we describe the 
electromagnetic state of matter in the 
presence of light?

II -Electromagnetic Optics

  

€ 

! 
E ( ! r ,t )

  

€ 

! 
H (! r ,t)
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II -Electromagnetic Optics: Definitions
! New set of vectors is required to describe the 

response of matter:

! E, H, B, D, j and ρ are related by Maxwell’s 
equations (set of 4 coupled PDE’s)

  

€ 

Electric current density 
! 
j 

Electric displacement (electric flux density) 
! 
D 

Magnetic displacement (magnetic induction) 
! 
B 

ρ density of free charges
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II -Electromagnetic Optics: Definitions
! General solution of Maxwell’s equations 

is complicated (would provide 
electromagnetic response of matter - D 
and B - in the presence of E and H 
fields)

! For harmonic fields and isotropic media, 
relation between applied fields and 
response is simple
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II -Electromagnetic Optics: In Vacuo

! ε = Electric permittivity or 
dielectric constant

! µ = magnetic permeability
• µ ~ 1 non-magnetic (most 

substances)
• µ > 1 paramagnetic
• µ< 1 diamagnetic

! σ = specific conductivity
• σ negligibly small: insulators 

(dielectrics)
• σ not negligibly small: conductors

  

€ 

! 
D =ε

! 
E 

  

€ 

! 
B = µ

! 
H 

  

€ 

! 
j =σ
! 
E 
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II -Electromagnetic Optics: Definitions

! Previous set of equations describes the 
response of matter in the presence of 
weak fields.

! Linear response: 1st power of fields
! For strong fields (strength of the order 

of valence electrons binding energies):
• Response is non linear
• Must include higher-order components of 

the fields
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II -Electromagnetic Optics: Definitions

! The laws of Optics must be modified 
(Non-linear Optics, Bloembergen, 1965)

  

€ 

! 
D =ε

! 
E + (ε )2

! 
E 
! 
E + (ε )3

! 
E 
! 
E 
! 
E + ...

! 
D =ε

! 
E + (ε )2

! 
E 2 + (ε )3

! 
E 3 + ...
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II -Electromagnetic Optics: In Medium
! Effects of the fields can be described 

using “additive” relations:

    

€ 

! 
D =ε 0

! 
E +
! 
P 

! 
P  =  Polarization =  Dipole moment/m3

! 
B = µ 0

! 
H + µ 0

! 
M 

! 
M  =  Magnetization =  Magnetic moment/m3
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II -Electromagnetic Optics: Definitions
! For weak fields, polarization and 

magnetization are assumed to be 
linearly proportional to the applied 
fields:

    

€ 

! 
P = χε 0

! 
E 

χ =  electric susceptibility
! 
D =ε 0

! 
E + χε 0

! 
E =ε 0 1+ χ( )

! 
E 

ε =ε 0 1+ χ( )

ε r =
ε
ε 0

= 1+ χ( )

relative permittivity     

€ 

µ0

! 
M = µ 0χm

! 
H 

χm =  magnetic susceptibility
! 
B = µ 0

! 
H + χmµ0

! 
H = µ 0 1+ χm( )H

µ = µ 0 1+ χm( )

µ r =
µ
µ 0

= 1+ χm( )

relative permeability
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II -Electromagnetic Optics: Maxwell’s 
Equations

! In optics, generally non-magnetic media 
and no currents (                   )

! The flow of electromagnetic energy is 
given by the Poynting vector:

    

€ 

M =
! 
0  and j = 0

€ 

P = E ×H

€ 

∇×E = −µ
∂H
∂t

∇⋅D = ρ

€ 

∇×H =ε
∂E
∂t

+ j

∇⋅B = 0
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II -Electromagnetic Optics: Maxwell’s 
Equations

! Most optical materials are dielectrics:
• L = linear : if P is linearly related to E
• ND = non-dispersive: instantaneous 

response: P at t is determined by E at t.
• H = homogeneous: relation between P and 

E is independent of r
• I = isotropic: relation between P and E is 

independent of the direction of E. Medium 
is identical from all directions of space.
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II -Electromagnetic Optics: Maxwell’s 
Equations

! Medium is L, ND, H and I:

! Each component of E, H satisfy 
separately the wave equation (same as 
wave optics):

  

€ 

! 
P = χε 0

! 
E ;
! 
D =ε

! 
E ;ε =ε 0 1+ χ( )

  

€ 

∇2u( r,t )− 1
c2
∂ 2u( r,t )
∂t 2

= 0 with c =
1

εµ 0( )2
=
c0
n

n =
ε
ε 0

& 

' 
( 

) 

* 
+ 

1
2

= 1+ χ( )
1
2
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II -Electromagnetic Optics: Maxwell’s 
Equations - inhomogeneous medium
! Medium is L, ND, I, inhomogeneous 
! (e.g. a graded-index optical fibre)
! The spatial variations of             are small 

over distances of a few wavelengths

    

€ 

! 
P = χ( ! r )ε 0

! 
E ;
! 
D =ε( ! r )

! 
E 

∇2E − 1
c( ! r )2

∂ 2E
∂t 2

= 0 

  

€ 

n = n( ! r )
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! Medium is L, ND, H but anisotropic: 
relation between P and E depends on the 
direction of E 

! P and E are not necessarily parallel:
• Dielectric properties described by an array of 

(3x3) constants called the susceptibility tensor

II -Electromagnetic Optics: Maxwell’s 
Equations
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II -Electromagnetic Optics: Maxwell’s 
Equations-Anisotropic medium

! Each component of P (or D) is given by:

! Typically crystals with non cubic symmetries 
are anisotropic media

  

€ 

Pi = ε 0χ ijE j
j
∑

i, j = 1,2,3 denotes x,y,z components

Di = ε ijE j
j
∑

ε ij  components of electric permittivity tensor
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II -Electromagnetic Optics: Maxwell’s 
Equations nonlinear medium

! The relation between P and E is non 
linear:

! Maxwell’s equations must be used to 
derive a non-linear partial differential eqn

  

€ 

P = Ψ(E ),  e.g. P = a1E + a2E
2

+ a3E
3

    

€ 

∇2E − 1
c2
∂ 2E
∂t 2

= µ0
∂ 2P
∂t 2

= µ0
∂ 2Ψ(

! 
E )

∂t 2

Basic equation of non linear optics
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II -Electromagnetic Optics: Elementary EM 
waves

! The Transverse Electromagnetic (TEM) 
Plane Wave (medium L,H,I):

 

EE   

HH   

kk   

  

€ 

(1) From Maxwell: E0

H0

" 

# 
$ 

% 

& 
' =: ωµ0

k
" 

# 
$ 

% 

& 
' =: c0µ0

n
" 

# 
$ 

% 

& 
' =

µ0

ε 0

" 

# 
$ 

% 

& 
' 

1
2

n
=η

Eta =  (optical) impedance of medium

(2) From Poynting:  I =
Eo

2

η

    

€ 

! 
E ( ! r ) =

! 
E 0e

−i k⋅r  H( ! r ) =
! 

H 0e
−i k⋅r
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III-Polarisation of Light

! Polarisation = time course of the 
direction of the electric field vector E(r,t)

! In paraxial optics, EM waves are 
approximately TEM: E(r,t) lies in 
transverse plane

! If medium is isotropic: wave is 
elliptically polarized
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! Polarisation plays an important role in 
optics:
• Amount of reflected light depends on 

polarisation state at the boundary (interface)
• Amount of light absorbed depends on state 

of polarisation (dichroism)
• Refractive index of anisotropic materials 

depends on polarisation state (see optical 
devices - birefringent materials)

• Rotation of plane of polarisation of linearly 
polarised light in presence of external 
electric or magnetic field

III-Polarisation of Light
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III-Polarisation of Light: polarisation 
ellipse

    

€ 

•  
! 
E ( z,t ) = Re

! 
A e

−i 2πν ( t−z
c

)% 

& 
' 

( 

) 
* 

Monochromatic plane wave travelling
in Oz direction with velocity c

• Complex envelope (amplitude):  
! 
A = Ax ˆ x + Ayˆ y 

Ax = axe
−iϕx ;  Ay = aye

−iϕy
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III-Polarisation of Light: polarisation 
ellipse

! Polarisation = End point of E(z,t)  = 
location of points whose coordinates 
are (Ex, Ey):   

€ 

! 
E ( z,t ) = Ex ˆ x + Eyˆ y 

  

€ 

Defining τ = 2πν ( t− z
c
)

Ex = ax cos(τ +ϕx ),  Ey = ay cos(τ +ϕy ),  Ez = 0
Ex

ax
= cosτ cosϕx − sinτ sinϕx etc...and ϕ =ϕy −ϕx
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III-Polarisation of Light: polarisation 
ellipse

! Equation of ellipse (conic):

€ 

Ex

ax

" 

# 
$ 

% 

& 
' 

2

+
Ey

ay

" 

# 
$ 

% 

& 
' 

2

− 2 Ex

ax

Ey

ay

" 

# 
$ 

% 

& 
' cosϕ = sin 2ϕ 

2ay 

2ax 

y 

x 

 

  

€ 

The " tilt"  Ψ is obtained from:

tan 2Ψ =
2axay cosϕ
( ax

2 − ay
2 )
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III-Polarisation of Light: polarisation 
ellipse

! The magnetic vector is also elliptically 
polarised

! At fixed value of z, E rotates at frequency (v) 
nu in (x-y) plane tracing out an ellipse

! At fixed t (snap shot): the location of the tip 
follows a helical trajectory

! State of polarisation determined by tilt (value 
of psi) and ratio of major to minor axes
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III-Polarisation of Light: Polarisation 
ellipse 

x 

y 

z 

E E E 

Timecourse of tip 
of E is an elliptical 
helix:
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III-Polarisation of Light:  
polarisation ellipse

Right-Handed Elliptically Polarised: sinϕ>0

Left-Handed Elliptically Polarised: sinϕ<0
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III-Polarisation of Light: polarisation ellipse

! The nature of the polarisation can be 
determined from:

• Linear Polarisation: 

€ 

Ey

Ex

=
ay
ax
ei (ϕx −ϕy ) =

ay
ax
e−iϕ

€ 

Ey

Ex

= −1( )m
ay
ax

,  as ellipse reduces to a straight line 

when ϕ = mπ (m = 0,±1,±2,...)
Linear polarisation also for ax or ay = 0
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III-Polarisation of Light: 
polarisation ellipse

• Circular Polarisation: the ellipse 
degenerates into a circle if ax=ay=a0 and 
ϕ=mπ/2 (m =±1, ±3, ±5,...)

• Using complex form:

€ 

Ex
2 +Ey

2 = a0
2

€ 

Right - handed circularly polarized :  ax = ay ,ϕ = π /2
Ey

Ex

= e−i
π
2 = −i

Left - handed circularly polarized :  ax = ay ,ϕ = −π /2
Ey

Ex

= ei
π
2 = i
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! A monochromatic plane wave is 
completely determined by the 
knowledge of the complex envelope Ax 
and Ay

! Can be represented in the form of a 2-
component column matrix -the Jones 
vector:

III-Polarisation of Light: 
Matrix Representation; Jones Vector

 

!
J =

Ax

Ay

!

"

#
#

$

%

&
&
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! From J, one can calculate the total light 
intensity:

! The orientation and shape of the 
polarisation ellipse can be obtained 
from:

III-Polarisation of Light: 
Jones Vector

€ 

I = Ax
2

+ Ay
2( ) / 2η

€ 

ay
ax

=
Ay

Ax

;ϕ =ϕy −ϕx = arg Ay{ }− arg Ax{ }
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! Jones vectors for typical polarisations: 
intensity is normalised so that:

III-Polarisation of Light: 
Jones Vector

  

€ 

Ax
2

+ Ay
2( ) =1 and ϕx = 0

  

€ 

1
0
" 

# 
$ 
% 

& 
' 

Linear Polarisation
in x direction

 y 

x 

  

€ 

cosψ
sinψ
# 

$ 
% 

& 

' 
( 

Linear Polarisation
making angle ψ
with x axis

 y 

x 
 

 y 

x 

  

€ 

1
2

1
(−)i
# 

$ 
% 

& 

' 
( 

Right(left) -handed
circular polarisation
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! Jones vectors J1 and J2 are orthogonal 
if (inner product is 0):  

! Any arbitrary Jones vector J, can be 
analysed as a weighted superposition of 
two orthogonal polarisations:

III-Polarisation of Light: 
Jones Matrix

  

€ 

! 
J 1 ⋅
! 
J 2

* = ( A1xA2x
* + A1yA2y

* ) = 0

  

€ 

! 
J =α1

! 
J 1 +α 2

! 
J 2

α1 =
! 
J ⋅
! 
J 1

*;α 2 =
! 
J ⋅
! 
J 2

*
 

!
J1,
!
J2  normalised to unity

!
J1 •
!
J1

* =
!
J2 •
!
J2

* = 1
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! A linear optical system that maintains 
the plane wave nature of light but alters 
its polarisation can be represented by a 
(2×2) Jones matrix T:

III-Polarisation of Light: Jones Matrix

    

€ 

! 
J 1 =

A1x

A1y

" 

# 
$ 

% 

& 
' 

Input Wave     

€ 

! 
J 2 =

A2x

A2y

" 

# 
$ 

% 

& 
' 

Output Wave  

€ 

T =
T11 T12
T21 T22

" 

# 
$ 

% 

& 
' 

Optical System

  

€ 

! 
J 2 = T

! 
J 1
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! Examples of Jones matrices:
III-Polarisation of Light: Jones Matrix

  

€ 

1. The Linear Polariser :

T =
1 0
0 0

" 

# 
$ 

% 

& 
' 

A1x
A1y

" 

# 
$ 

% 

& 
' T( → ( 

A2x = A1x
0

" 

# 
$ 

% 

& 
' 

   

€ 

2. The Wave Retarder :

T =
1 0
0 e-iΔ

# 

$ 
% 

& 

' 
( 

A1x
A1y

# 

$ 
% 

& 

' 
( T) → ) 

A2x = A1x
A2y = A1ye

-iΔ

# 

$ 
% 

& 

' 
( 

  

€ 

Δ =
π
2

= quarter - wave retarder

Δ = π = half - wave retarder

  

€ 

3. The Polarisation Rotator :

T =
cosθ -sinθ
sinθ cosθ
# 

$ 
% 

& 

' 
( 

cosθ1
sinθ1

# 

$ 
% 

& 

' 
( 

T) → ) 
cosθ 2
sinθ 2

# 

$ 
% 

& 

' 
( 

θ 2 =θ +θ1
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! Normal modes of a polarisation system 
are the states of polarisation that 
remain unchanged when transmitted 
through the system

! Normal modes = eigenvectors of T 
matrix (2 modes)

III-Polarisation of Light: Normal modes

  

€ 

T
! 
J = µ

! 
J 
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! Normal modes are orthogonal and form 
a basis set (T is hermitian)

! Any input wave J = superposition of 
normal modes:

! The response can be easily evaluated 
using:

! Problem: Find the Normal Modes

III-Polarisation of Light: Normal modes

  

€ 

! 
J =α1

! 
J 1 +α 2

! 
J 2

  

€ 

T
! 
J = T(α1

! 
J 1 +α 2

! 
J 2 )=α1T

! 
J 1 +α 2T

! 
J 2 =α1µ1

! 
J 1 +α 2µ 2

! 
J 2
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! Reflection and refraction of 
monochromatic plane wave of arbitrary 
polarisation incident at dielectric 
boundary (n1,n2)

III-Polarisation of Light: Example of normal 
modes

 

n1 

n2 
TM 

TM 

TE 
TE 

The normal modes (from Maxwell’s) 
are the two linear polarisations:

TE (transverse electric, parallel to the 
boundary): sigma or s polarisation
TM (Transverse magnetic parallel to 
the plane of incidence): parallel or pi 
polarisation
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IV-Crystal Optics
! Crystals are anisotropic media: electric 

displacement vector D depends (possibly) 
on all the components of applied E field.

! Each component of D can be written as:

  

€ 

Di = ε ij E j  with i, j = 1,2,3≡ x,y,z
j
∑

˜ ε  is a second - rank tensor :  the permittivity tensor

Electric displacement 
! 
D  is the contraction of

a 2- tensor and a vector (tensor rank one) :
! 
D = ˜ ε 

! 
E 
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! Examples of anisotropic media
IV-Crystal Optics

(a) Completely isotropic: long and short-range disorder
(b) Short-range order, long-range disorder: average macroscopic 

behaviour is isotropic
(c) Positional and orientational orders: anisotropic (except fcc lattices)
(d) Short-range disorder, long-range order: average macroscopic 

behaviour is anisotropic
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! There always exists a system of 
coordinates in which ε has only diagonal 
elements: ε11, ε22, ε33

! This system defines the Principal Axes: 
directions of space for which E and D are 
parallel.

! The principal refractive indices are:

IV-Crystal Optics

  

€ 

n1 =
ε1
ε 0

# 

$ 
% 

& 

' 
( 

1
2
   n2 =

ε 2
ε 0

# 

$ 
% 

& 

' 
( 

1
2
    n3 =

ε 3
ε 0

# 

$ 
% 

& 

' 
( 

1
2
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! Anisotropy leads to birefringence: phase 
velocity of an optical beam clearly 
depends on the direction of polarisation of 
its E vector.

! Three types of crystals:
• Uniaxial: n1= n2 = no (ordinary index), n3 = ne 

(extraordinary index) calcite, quartz
• Biaxial: n1, n2, n3 are all different.
• Isotropic n1=n2=n3

IV-Crystal Optics
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! Geometrical construction that completely 
describes the optical properties: it specifies 
the values of the Principal refractive indices 
and the directions of the Principal axes.

! This is called the Index Ellipsoid. It is the 
surface of equation:

IV-Crystal Optics

x2

n1
2 +

y2

n2
2 +

z2

n3
2 = 1

x, y, z :  principal axes
n1,n2,n3: principal indices
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=1

IV-Crystal Optics
1. Index ellipsoid is 

an ellipsoid of 
revolution for 
uniaxial crystals

2. Index ellipsoid is a 
sphere for cubic 
crystal

3. z is called optic 
axis for uniaxial 
crystals
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! Propagation of plane EM waves (linearly 
polarised) along one of Principal axes: 
what are the normal modes?

IV-Crystal Optics

•Linear polarisation 
along x or y directions: 
Wave travels at phase 
velocity c0/n1 or (c0/n2) 
without change of 
polarisation.

•D1=ε1E1 (D2=ε2E2) 

If k is along Oz, the Normal modes are the linearly 
polarised waves in the x and y directions respectively
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! If k is along Oz, but E 
is in x-y plane making 
angle θ with Ox

! Resulting polarisation?

IV-Crystal Optics
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! If k is along Oz, but E is 
in x-y plane making angle 
θ with Ox

! Traveling wave is a sum 
of the normal modes: 
each travels at (c0/n1) 
and (c0/n2) respectively

! The phase difference 
after a distance d 
travelled through the 
crystal:

IV-Crystal Optics
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€ 

ϕ =
2π
λ0

n2 − n1( )d

•The output wave is 
elliptically polarised.

•Crystal acts as a 
wave retarder
•Retardation plates 
are polarisation state 
converters
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! Propagation in any arbitrary direction (take 
the case of uniaxial crystals only): k makes 
angle θ with respect to Oz (optic axis)

! The normal modes are linearly polarised and 
orthogonal directions OA and OB (next slide).

! They form the semi-axes of the Index Ellipse 
and define the Ordinary (Direction OB) and 
Extraordinary (Dir. OA) waves respectively

! O (Ordinary) wave travels at c0/nO, E wave 
travels at c0/ne(θ) (uniaxial crystal).

! Simple geometry is used to calculate ne(θ)

IV-Crystal Optics



66

A

B

O

zA

€ 

Equation of ellipse
y 2

n0
2 +

z2

ne
2 =1

  

€ 

! 
k =
! 
k ! u 

y

θθ

  

€ 

Index Ellipse (the normal modes are 

along O
! 
A  and O

! 
B )

z

IV-Crystal Optics
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Sin(θ) = z /(ne(θ))

Sin(90 − θ) = Cos(θ) = y/(n0(θ))
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! For θ = 0 (k along z), n0 = ne(θ) so that 
there is no birefringent behaviour 
(Hence the name uniaxial).

! A Retardation plate has its optic axis in 
the plane of the plate surface. The 
desired state of polarisation is obtained 
by adjusting the thickness (see p.64) 

IV-Crystal Optics



V POLARIZATION DEVICES: 
POLARIZERS

! Linear polarizer:
• Transmits components of E field along 

the direction of its transmission axis
• Blocks the orthogonal component
• Can be achieved by:

• Dichroic materials (selective absorption); 
Polaroid sheet

• Selective reflection from isotropic media; 
Brewster’s angle

• Selective reflection/refraction in anisotropic 
�68



V POLARIZERS: POLARIZING 
BEAMSPLITTERS

! Ordinary and extraordinary waves 
refract at different angles in 
anisotropic crystal: polarized light can 
be obtained from unpolarized light.

! Typically two cemented prisms made 
of uniaxial materials with different 
orientations:
• Wollaston prism
• Rochon prism

�69



V POLARIZERS: POLARIZING 
BEAMSPLITTERS

�70

O-ray is totally internally 
reflected at cement 
interface



V POLARIZERS: Wave Retarders
! Convert one polarisation into another
! Normal modes are linearly polarised 

along the fast nf and slow ns axes.
! Constructed from anisotropic 

materials in the form of plates: light is 
made to travel along one of the 
principal axis

! Retardation is directly proportional to 
plate thickness:

�71Γ =
2π
λ

nf − ns( )d



V POLARIZERS: Wave Retarders
! Retardation is directly proportional to 

the thickness of the plate
! Retardation is inversely proportional 

to the wavelength
! Thin sheet of mica: 
• Indices: 1.599 and 1.594 at 633 nm (He-

Ne laser)
• Sheet of 63.3 microns yields 

�72

→ Γ / d ≈ 15.8 rad/mm
Γ ≈ π  rad



V Wave Retarders: Light intensity 
control

! Wave retarder placed between 2 cross-polarisers whose 
axes are at 45 deg. with respect to the axes of the 
retarder.

! Intensity transmittance of this device is: 

! Intensity can be changed by altering the retardation (see 
Electro-Optics) via use of electro-optic anisotropic crystals�73

IT = sin
2 (Γ 2)


