25th ICLS, 19th to 24th June – 2022. Caserta, Italy.

Optical Spectroscopy of Self-Colliding Plasmas Mossy (TJ) Kelly¹, Stephen Davitt², Lazaros Varvarezos³ & John T. Costello³

- 1. Department of Computer Science and Applied Physics, Atlantic Technological University, Galway, Ireland
- 2. TOMRA Ltd., Citywest Business Campus, Citywest 24, Co. Dublin, Ireland
- 3. School of Physical Sciences and NCPST, Dublin City University, Dublin 9, Ireland

Talk Outline

Deu
Ollscoil Chathair

Dublin City University

- Chathair tha Cliath • TWO
- Colliding Plasmas (a little) History & Fundamentals
- Some Experimental Considerations
 - Two Examples of Colliding Plasmas in Vacuo
 - Getting Plasmas to Collide in Atmospheric Pressure Air
 - 'Self-Colliding' Plasmas?
 - Preliminary Results (Imaging & Spectroscopy)
 - Opacity Effects and the 1D 'Sakka' Model
 - Perspective

A Little History

Plasma Physics, Vol. 16, pp. 969 to 975. Pergamon Press 1974. Printed in Northern Ireland

Not a new idea ! First report - 1974

INTERACTIONS BETWEEN TWO COLLIDING LASER PRODUCED PLASMAS

P. T. RUMSBY,* J. W. M. PAUL and M. M. MASOUD[†] UKAEA Research Group, Culham Laboratory, Abingdon, Berkshire, England

(Received 29 January 1974)

Why colliding plasmas?

NGC2346 – HST - Colliding Stars' https://en.wikipedia.org/wiki/NGC_2346

EUV Lithography – Sn target source

O.O. Versolato, J. Sheil, S.M. Witte, W. Ubachs, R. Hoekstra, J. Opt. 24, 054014 (2022)

Hohlraum – Indirect Drive Fusion – NIF https://lasers.llnl.gov

Pulsed Laser Deposition – J P Mosnier DCU

LIBS – Analytical Sciences – Applied Spectra Inc.

Some Fundamentals

Time Evolution:

Tight point focus on each Ca face:

15 ns/ 120 mJ per 1064 nm beam

ICCD: 5 ns gate 10 ns interval

Atomic Ca - Emission Imaging @ 423 nm

H Luna, K D Kavanagh and J T Costello, J. Appl. Phys. 101 Art No 033302 (2007)

Some Fundamentals

Ollscoil Chathair Bhaile Átha Cliath Dublin City University When a pair of laser plasma plumes collide two extreme scenarios can play out:

- 1. Interpenetration interactions are mostly via binary collisions
- Stagnation plumes decelerate suddenly at the collision plane leading to rapid accumulation of material and the formation of a dense (stagnated) layer. Kinetic energy is converted into excitation energy (layer glow).

Some Fundamentals

Collisionality Parameter: $\xi = \frac{D}{\lambda_{ii}}$ Ion - Ion Mean Free Path (mfp)

For collisions between opposing plumes (1, 2)

$$\lambda_{ii}(1-2) = \frac{m_i^2 v_{12}^4}{4\pi e^4 Z^4 n_e \ln(\Lambda_{12})}$$

2

1

 $\lambda_{ii} >> D \rightarrow$ Interpenetration $\lambda_{ii} \sim D \rightarrow$ 'Soft' Stagnation $\lambda_{ii} << D \rightarrow$ 'Hard' Stagnation

Slow moving and dense laser plasma plumes are more likely to stagnate !

P. W. Rambo and J. Denavit, Phys. Plasmas **1** pp 4050 - 4060 (1994) J Dardis and J T Costello, Spectrochimica Acta Part B **65** pp627-635 (2010)

Some Experimental Considerations

ICCD Spectroscopy: Time and space resolved.

C Fallon, P Hayden, N Walsh, E T Kennedy and J T Costello, Physics of Plasmas 22, 093506 (2015)

Two Examples of Colliding Plasma Setups

Use a Biprism => Symmetric Seed Plasmas Fresnel Biprism Axicon => Bessel Beam + Focusing => Ring Seed Plasma **‡**d_r

Ollscoil Chathair Bhaile Átha Cliath **Dublin City University**

Example 1: Symmetric **Seed Plasmas**

Imaging - effect of seed collision angle

5000

C Fallon, P Hayden, N Walsh, E T Kennedy and J T Costello, J. Phys: Conference Series 548 012036 (2014)

Example 2: Annular Seed Plasma

Annulus Area: 0.07 cm² Power Density: 1.0 GW/cm²

Ollscoil Chathair Bhaile Átha Cliath Dublin City University

Example 2: Annular Seed Plasma

5ns gate width / 0° viewing angle.

5ns Delay

200ns Delay

5ns gate width / 90° viewing angle.

Laser Induced Breakdown Spectroscopy with Annular Plasmas in Vacuo: Stagnation and Limits of Detection. B Delaney, P Hayden, T J Kelly, E T Kennedy, and J T Costello, Spectrochimica Acta Part B: Atomic Spectroscopy **193** Art. No. 106430 (2022)

Stagnation Layer (AI). *Electron density* (*Stark,* $3s^23p$ (${}^2P_{1/2,3/2}$) – $3s^24s$ (${}^2S_{1/2}$))

~100 mJ/170 ps/1064 nm 'seed' beam J Dardis and J T Costello, Spectrochimica Acta Part B 65 pp 627-635 (2010)

Stagnation Layer (Ca): Electron Temp. – Line ratios

Stagnation layers (SL) in vacuo – three take-aways

DCU Ollscoil Chathair Bhaile Átha Cliath

Dublin City University

- Stagnation layers becomes quite uniform >100 ns after stagnation layer formation
- Densities and temperatures remain at higher values for longer in stagnation layers
- The duration of self emission from atoms and ions lasts longer than that from single plumes

Ergo stagnation layers look potentially attractive for use in laser ablation analytical sciences [LAAS] like LIBS[§] (*Laser Induced Breakdown Spectroscopy*) but only if they can be formed in air !

§ Laser Induced Breakdown Spectroscopy with Annular Plasmas in Vacuo: Stagnation and Limits of Detection. B Delaney, P Hayden, T J Kelly, E T Kennedy, and J T Costello, Spectrochimica Acta Part B: Atomic Spectroscopy **193** Art. No. 106430 (2022)

Getting Plasmas to Collide in High Pressure Air

Even an ambient air pressure of 1 mbar (separation D = 10 mm) appears to prevent a significant plume-plume collision rate.

Unpublished – Work associated with P K Pandey, R K Thareja, R Pratap Singh and J T Costello, Applied Physics B, 124, 50 (2018)

'Self-Colliding' Plasmas

The Effect of Confinement Angle on Self-Colliding Aluminium Laser Plasmas Using Spectrally Resolved Fast Imaging L Varvarezos, S J Davitt, J T Costello and T J Kelly, Materials 13, 5489 (2020); doi:10.3390/ma13235489

'Self-Colliding' Plasmas

The Effect of Confinement Angle on Self-Colliding Aluminium Laser Plasmas Using Spectrally Resolved Fast Imaging L Varvarezos, S J Davitt, J T Costello and T J Kelly, Materials **13**, 5489 (2020); doi:10.3390/ma13235489

Preliminary Results – Time Resolved Imaging

Ollscoil Chathair Bhaile Átha Cliath Dublin City University Some observations from imaging experiments.

- Around 160 ns, the 90° and 60° V-channel targets were seen to form two distinct components, the stationary plasma and the 'plasma lobe'.
- The stationary plasma appeared to exhibit some of the characteristics expected of a stagnation layer (need to confirm).
- Spectrally filtered images showed the Al²⁺ species moving towards/ occupying the leading edge of the plasma while the neutral Al species tended to remain close to the target surface in each case.
- Potentially (a degree of) forced recombination was evident for plasma plumes formed within the V-channel targets showing points of intense AI emission due to interactions with the target walls.

The Effect of Confinement Angle on Self-Colliding Aluminium Laser Plasmas Using Spectrally Resolved Fast Imaging L Varvarezos, S J Davitt, J T Costello and T J Kelly, Materials **13**, 5489 (2020); doi:10.3390/ma13235489

Ollscoil Chathair Bhaile Átha Cliath Dublin City University

Al I doublet. $3s^23p (^2P_{1/2,3/2}) - 3s^24s (^2S_{1/2}))$

Ollscoil Chathair Bhaile Átha Cliath Dublin City University Solution – use a simple (1D) model of radiation transport.

Spatial population distribution of laser ablation species determined by self-reversed emission line profile. T. Sakka, T. Nakajima, and Y.H. Ogata, Journal of Applied Physics **92**, pp2296–2303 (2002)

Single AI plasma plume (30 ns gate, 260 ns delay)

Kevin Kavanagh, PhD Thesis, DCU.

Ca II doublet. $3p^{6}4s ({}^{2}S_{1/2}) - 3p^{6}4p ({}^{2}P_{1/2,3/2})$

 $\times 10^4$

1.5

0.5

A COLOR

2.5

3

2

1.5

Position (mm)

C) 3

2.5

Position (mm) 1.5

0.5

0

0

0.5

Mossy Kelly

WORK

IN PROGRESS

Al I doublet. $3s^23p (^2P_{1/2,3/2}) - 3s^24s (^2S_{1/2}))$

500 ns delay, 30 ns gate width, 60^o wedge angle, Spectrometer slit to record ca. 1.6 mm from the apex.

WORK

IN

Mossy Kelly

Some observations from spectroscopy experiments.

- The jury is still out on whether we can make 'stagnation layers' in air with desirable properties
- Looks like we have two distinct regions in the plasma and so, even if we have a system that could exhibit flat density/temperature over periods of 100s ns, it may only apply to a limited space region.
- For applications where the region can be isolated e.g., LIBS, this may not be a problem.
- For stagnation layers *in vacuo* the situation is more positive... double-pulse LIBS¹, PLD², etc.

1. Laser Induced Breakdown Spectroscopy with Annular Plasmas in Vacuo: Stagnation and Limits of Detection. B Delaney, P Hayden, T J Kelly, E T Kennedy, and J T Costello, Spectrochimica Acta Part B: Atomic Spectroscopy 193 Art. No. 106430 (2022) - https://doi.org/10.1016/j.sab.2022.106430

2. *Deposition of nanocomposite Cu–TiO2 using heterogeneous colliding plasmas,* P K Pandey, R K Thareja, R Pratap Singh and J T Costello, Applied Physics B, 124, 50 (2018) - https://doi.org/10.1007/s00340-018-6919-8

Our Colliding Plasma Papers

Ollscoil Chathair Bhaile Átha Cliath Dublin City University Laser Induced Breakdown Spectroscopy with Annular Plasmas in Vacuo: Stagnation and Limits of Detection, B Delaney, P Hayden, T J Kelly, E T Kennedy, and J T Costello, Spectrochimica Acta Part B: Atomic Spectroscopy 193 Art. No. 106430 (2022) - https://doi.org/10.1016/j.sab.2022.106430

The Effect of Confinement Angle on Self-Colliding Aluminium Laser Plasmas Using Spectrally Resolved Fast Imaging, L Varvarezos, S J Davitt, J T Costello and T J Kelly, Materials 13, 5489 (2020); doi:10.3390/ma13235489

Deposition of nanocomposite Cu–TiO2 using heterogeneous colliding plasmas, P K Pandey, R K Thareja, R Pratap Singh and J T Costello, Applied Physics B, 124, 50 (2018) -

Heterogeneous (Cu-Ti) colliding plasma dynamics, P K Pandey, R K Thareja and J T Costello, Physics of Plasmas 23, 103516 (2016)

Target geometrical effects on the stagnation layer formed by colliding a pair of laser produced copper plasmas, C Fallon, P Hayden, N Walsh, ET Kennedy and J T Costello, Physics of Plasmas 22, 093506 (2015)

Interpenetration and stagnation in colliding laser plasmas, K F Al-Shboul, S S Harilal, S M Hassan, A Hassanein, J T Costello, T Yabuuchi, K A Tanaka, and Y Hirooka, Physics of Plasmas 21, 013502 (2014)

Dynamics of colliding aluminium plasmas produced by laser ablation, N Gambino, P Hayden, D Mascali, J T Costello, C Fallon, P Hough, P Yeates, A Anzalone, F Musumeci and Studisco, Applied Surface Science 272 69-75 (2013)

Enhanced shock wave detection sensitivity for laser produced plasmas in low pressure ambient gases using interferometry, P Hough, T Kelly, C Fallon, C McLoughlin, P Hayden, E Kennedy, J Mosnier, S Harilal and J T Costello, Meas. Sci. Technol. 23 125204 (2012)

Charge resolved electrostatic diagnostic of colliding copper laser plasma plumes, P Yeates, C Fallon, E T Kennedy and J T Costello, Physics of Plasmas 18 103104 (2011)

Ion emission in collisions between two laser-produced plasmas, P Hough, P Hayden, C Fallon, T J Kelly, C McLoughin, P Yeates, J-P Mosnier, E T Kennedy, S S Harilal and J T Costello, J. Phys. D: Appl. Phys. 44 355203 (2011)

Stagnation layers at the collision front between two laser-induced plasmas: A study using time resolved imaging and spectroscopy, J Dardis and J T Costello, Spectrochimica Acta Part B 65, pp627-635 (2010)

Emission characteristics and dynamics of the stagnation layer in colliding laser produced plasmas, P Hough, C McLoughlin, S Harilal, J-P Mosnier and J T Costello, J. Appl. Phys. 107, Art. No. 024904 (2010)

Electron and ion stagnation at the collision front between two laser produced plasmas, P Hough, C McLoughin, T J Kelly, S S Harilal, J P Mosnier and J T Costello, J. Phys. D: Appl. Phys. 42, Art. No. 055211 (2009)

Analysis of time-resolved laser plasma ablation using an imaging spectra technique, H Luna, J Dardis, D Doria, and J T Costello, Brasil. J. Phys. 37, pp1301-1305 (2007)

Study of a colliding laser-produced plasma by analysis of time- and space-resolved image spectra, H Luna, K D Kavanagh and J T Costello, J. Appl. Phys. 101, Art. No. 033302 (2007)

Plasma parametrization by analysis of time-resolved laser plasma image spectra, D Doria, K D Kavanagh, J T Costello and H Luna, Meas. Sci. Technol. 17, pp670-674 (2006)

Colliding Plasma People

DCU

John Dardis **Stephen Davitt** Colm Fallon Padraig Hough Kevin Kavanagh

Eugene Kennedy (Emeritus) Jean-Paul Mosnier Pramod Pandey Lazaros Varvarezos

Atlantic TU

Mossy Kelly Sivandan Harilal

PNNL

IIT Kanpur

Raj Thareja Ravi Pratap Singh

Purdue Univ Ahmed Hassanein UCDFederal Uni RioPaddy HaydenHugo de Luna

Extra Slides

Fits to colliding Ca plasmas in vacuo

Kevin Kavanagh PhD Thesis - DCU

Figure 7.16: Spectral image showing the $3p^{6}4s(^{2}S_{1/2})-3p^{6}4p(^{2}P_{3/2,1/2})$ at 393.36 and 396.84 nm recorded 400 ns after plasma initiation with a 30 ns gate width.

Fits to colliding Ca plasmas in vacuo

Figure 7.18: Best-fit input parameters calculated during the model comparison with a 400 ns spectroscopic image (figure 7.16).

Laser Plasma (Optical) Diagnostics Lab

Stephen Durkan / Séamus Cummins/ James Campbell - all PhD students

Lazaros Varvarezos (PD)

Standoff LIBS Prototype – Under Construction

Top view showing double pulse laser setup with telescope.

Split tables with laser PSUs

Spectrometers for WP1 1. Time-Gated 2. Continuous-Readout 3. Wide-Spectral Range

Ultrafast (UF) Laser Spectroscopy Lab

Ultrafast Laser Spectroscopy

DCU Ollscoil Chathair

Bhaile Átha Cliath Dublin City University

WP4. UF Laser Spectroscopy Laboratory @ DCU

WP4. Inside the UF Transient Spectrometer

WP4. UF Laser Table with Astrella Amplifier & OPAs

WP4. UF Time Resolved IR Spectrometer

VUV LIBS (and Photoabsorption)

Dual Pulse Vacuum-UV (VUV) LIBS Lab.