
PS403 - Digital Signal processing

7. DSP – The Discrete and Fast Fourier Transforms

Key Text:

Digital Signal Processing with Computer Applications (2nd Ed.)
Paul A Lynn and Wolfgang Fuerst, (Publisher: John Wiley & Sons, UK)

We will cover in this section
The rudiments of the DFT

An introduction to FFTs

We have also already looked at the discrete Fourier
Series of a periodic discrete sampled signal (data set)

For such a discrete (periodic) signal x[n] we can compute the
corresponding ‘line’ spectrum using:

Note:
1. x[n] is periodic and repeats every ‘N’ values.
2. ak is also periodic with period ‘N’ samples per cycle

€

ak =
1
N

x[n]exp
− j2πkn
N

$
%

&
'

n= 0

N

∑
where the ak’s are the complex harmonic amplitudes from which
the magnitude |ak| and phase Fk spectra can be obtained.

€

ak = Re ak()2 + Im ak()2

€

Φk = Tan−1 Im ak()
Re ak()
$
%
&

'
(
)

We have also already looked at the continuous Fourier
Transform of an aperiodic discrete sampled signal

For such a discrete (aperiodic) signal x[n] we can compute the
corresponding ‘continuum’ spectrum using:

Note:
1. x[n] is not periodic.
2. X(W) is periodic and repeats every 2p radians !!

where X(W) is complex and a continuous function of ‘frequency’
W in radians (or samples/cycle). The magnitude |X(W)| and
phase Fk(W) spectra can be obtained from:

€

X Ω() = Nak = x[n]exp − jnΩ()
n=−∞

n=∞

∑

€

X Ω() = X Ω()* X Ω() Φ! Ω = 𝑇𝑎𝑛"#
𝐼𝑚 𝑋 Ω
𝑅𝑒 𝑋 Ω

The Discrete Fourier Transform……

In general, in DSP one rarely comes across truly periodic signals. Most
often one deals with a digital signal or set of data like e.g., the daily price
of an equity like Coherent Inc. (NASDAQ: COHR) over say 180 days.

The Discrete Fourier Transform……

In general, in DSP one rarely comes across truly periodic signals. Most
often one deals with a digital signal or set of data like e.g., the daily price
of an equity like Coherent Inc. (NASDAQ: COHR) over say 180 days.

The Discrete Fourier Transform (DFT)……
So here x[n] contains the dollar prices and the data set contains 180
values. x[n] is defined for 0 ≤ n ≤ N-1. The DFT of x[n] is defined as:

𝑋 𝑘 = -
$%&

'"#

𝑥 𝑛 𝑒𝑥𝑝 −𝑗2𝜋𝑘 ⁄𝑛 𝑁

We can write X[k] as:

𝑋 𝑘 = -
$%&

'"#

𝑥 𝑛 𝑊'
!$

Where:
𝑊'

!$ = 𝑒𝑥𝑝 −𝑗2𝜋𝑘 ⁄𝑛 𝑁

One can write the inverse DFT (IDFT) as:

𝑥 𝑛 =
1
𝑁
-
$%&

'"#

𝑋 𝑘 𝑊'
"!$ where x[n] is evaluated

for 0 ≤ n ≤ N-1

The Discrete Fourier Transform (DFT)……
Looking at:

𝑋 𝑘 = -
$%&

'"#

𝑥 𝑛 𝑒𝑥𝑝 −𝑗2𝜋𝑘 ⁄𝑛 𝑁

You can see that if you try to evaluate X[k] outside the range:
0 ≤ k ≤ N-1 that X[k] (the DFT of an aperiodic signal) repeats itself. So
we see that it forms a periodic spectrum just like we saw with the
discrete Fourier Series of a periodic signal.

So the DFT considers an aperiodic signal to be periodic for
the purposes of computation !!!

The Discrete Fourier Transform (DFT)……
Of course why not just use:

and discretise the W scale in the range 0 ≤ W ≤ p. But how many values
of W should we choose ? What criterion (or criteria) should we use to
obtain the optimal number of W values for computational economy ?

To find out consider the sampling theorem but this time transformed to
the frequency domain. It will state that:

“The continuous or continuum spectrum of a signal of limited duration
‘T0’ seconds may be completed represented by (or restored from)
equally spaced frequency domain samples provided the samples are
spaced not more than 1/T0 Hz apart”

€

X Ω() = Nak = x[n]exp − jnΩ()
n=−∞

n=∞

∑

The Discrete Fourier Transform (DFT)……

For ‘N’ samples the total duration of the signal then is T0 = NT. Hence
we require that the frequency domain samples are separated by:

Dn = 1/NT (Hz) or equally Dw = 2p/NT (radians/second).

Remembering that W = wT we have that DW = Dw.T

Hence DW must be equal to 2p/N (radians).

In summary, if we want to discretize and compute X(W), the continuous
FT of a discrete sampled signal (or data set) with a total of ‘N’ samples,
then to satisfy the sampling theorem one must have at least ‘N’
frequency points….

One can see that the IDFT does exactly this. It returns ‘N’ values of x[n]
from ‘N’ values of X[k]……..

Properties of the Discrete Fourier Transform (DFT)……

These are as for the DFS and FT of a discrete sampled signal (data set):

1. x[n] = x[n + N] and X[k] = X[k + N]

2. Linearity

3. Time shifting: x[n] <-> X[k] => x[n – n0] <-> X[k]. 𝑊!
"#!

4. Convolution

5. Modulation

6. If x[n] is symmetric about n = 0, then the DFT is purely real.

7. If x[n] is anti-symmetric about n = 0, then the DFT is purely imaginary.

Rudiments of the Fast Fourier Transform (FFT)……

Work on the FFT started in the 1960s.

Continuous development since then.

The FFT covers a whole range of algorithms designed to speed up the
calculation of the DFT.

If you wish to calculate the DFT of a data string of ‘N’ elements you must
carry out N x N arithmetic operations. For N = 1 million, that’s 1 trillion
calculations. For a 1 GHz processor and assuming 10 CPU cycles
operation that’s 1013 / 109 = 10,000 seconds or almost 3 hours. A 1k x 1k
image would be an example. With modern FFTs and 1 GHz processor that
drops to typically 0.1 – 0.5 seconds (potentially faster with GPUs).

All FFTs work on the principle of eliminating repeated calculations.

Rudiments of the Fast Fourier Transform (FFT)……

It turns out that the same values of 𝑥 𝑛 .𝑊!
"# are evaluated many times

over. FFTs try to take advantage of this point by reducing the replication
of values.

Consider a compact data set of just 8 values for x[n] where ’k’ and ‘n’
each run from 0 – 7. So the product kn runs from 0 – 49. But there are
only 8 unique, distinct values of 𝑊!

"#.

which is evaluated in the range 0 ≤ k ≤ N-1

𝑋 𝑘 = -
$%&

'"#

𝑥 𝑛 𝑊'
!$

𝑊'
!$ = 𝑒𝑥𝑝 −𝑗2𝜋𝑘 ⁄𝑛 𝑁

Rudiments of the Fast Fourier Transform (FFT)……
Look at the 8 x 8 (k x n) matrix below.

Look at this 8 x 8 (k x n) matrix.
Not only are there just 8 distinct
values, if you ignore the sign,
there are actually only 4 unique
numeric values. So 64 possible
arithmetic calculations result in
only 4 values (if you know which
elements should be positive and
which ones should be negative).
So the features of periodicity and
symmetry contribute to the
inherent redundancy in the DFT.

All FFT algorithms exploit these
features.

Rudiments of the Fast Fourier Transform (FFT)……
Look at the 8 x 8 (k x n) matrix below.

So-called DFT decomposition is
the fundamental operation in FFT.
Essentially a DFT is expressed in
terms of shorter and hence
simpler DFTs. There are two
approaches – decimation in time
and index mapping.

We will look at the former. The
latter is for your next course or
module on DSP

Rudiments of the Fast Fourier Transform (FFT)……

Suppose we have a ‘N’ sample long data set where N = 2m.

1. Separate x[n] into two data sets of length N/2 each.

2. The first ‘subsequence’ contains only the even numbered data
points in x[n].

3. The second contains only the odd numbered points in x[n].

4. We set n = 2r for ‘n’ even and n = 2r + 1 for ‘n’ odd.

The DFT may now be recast as follows

Rudiments of the Fast Fourier Transform (FFT)……

𝑋 𝑘 = -
$%&

'"#

𝑥 𝑛 𝑊'
!$

𝑋 𝑘 = -
(%&

'/*"#

𝑥 2𝑟 𝑊'
*+! + -

(%&

'/*"#

𝑥 2𝑟 + 1 𝑊'
(*+-#)!

𝑋 𝑘 = -
(%&

'/*"#

𝑥 2𝑟 (𝑊'
*)+!+𝑊'

! -
(%&

'/*"#

𝑥 2𝑟 + 1 (𝑊'
*)+!

Rudiments of the Fast Fourier Transform (FFT)……

𝑋 𝑘 = -
(%&

'/*"#

𝑥 2𝑟 .𝑊'/*
+! +𝑊'

! -
(%&

'/*"#

𝑥 2𝑟 + 1 .𝑊'/*
+!

𝑊'
* = exp(−2𝑗2𝜋/𝑁) = 𝑊'/*

Noting that:

We get that:

𝑋 𝑘 = 𝐺 𝑘 +𝑊'
! . 𝐻[𝑘]

So we have broken the N-[point transform into two shorter N/2 point
transforms G[k] and H[k]. Note the first point for the evaluation of G[k] is
x[0] but for H[k] it is x[1] and hence the it is multiplied by the phase factor:
𝑊'

!

Rudiments of the Fast Fourier Transform (FFT)……

You continue the process of decimation-in-time until you finally end
up with with N/2 x 2-point DFTs to evaluate. For example:

n = {0 1 2 3 4 5 6 7} is broken down into

n = {0 2 4 6} and n = {1 3 5 7}

These two data sets are further broken down into

n = {0 4} and n = {2 6} and n = {1 5} and n = {3 7}

A 2-point DFT requires only one addition and one subtraction.
However the phase factors do add complexity, especially for large ‘N’.

Rudiments of the Fast Fourier Transform (FFT)……

In general for a ‘N’ point data set,
highly efficient FFT algorithms will get
you down from N2 calculations to of
order N.Log(N) calculations.

