
PS403 - Digital Signal processing

5. DSP - Non-Recursive (FIR) Digital Filters

Key Text:

Digital Signal Processing with Computer Applications  (2nd Ed.) 
Paul A Lynn and Wolfgang Fuerst, (Publisher: John Wiley & Sons, UK)

We will cover in this section
Finite Impulse Response (FIR) filter design

Windowing (Apodization) in DSP

Digital Differentiators



We have already looked at some non-recursive filters in detail -
e.g., Weighted Moving Average (Savitsky-Golay)

We will first consider what the impulse response of a 'perfect or ideal'
low pass filter might look like.

Consider the ideal frequency response as shown in figure 5.1. Only the
range 'W' range from 0 - p (dc - 2 samples/cycle) is unique for an 
adequately sampled signal. We will make it symmetric about the 
frequency or 'W' axis to simplify the mathmatics).

See Figure 5.1 in Lynn and Fuerst

Non-Recursive (FIR) Digital Filters

We know that the general form of the difference equation for any digital
filter is given by:
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aky n − k[ ]
k= 0
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Non-Recursive (FIR) Digital Filters
Non-Recursive filters depend only on present and previous inputs Þ

Direct Convolution Sum

€ 

y[n] = bk x n − k[ ]
k= 0

k=M

∑

Hence to implement the filter we simply convolve the input signal with
the coefficients bk (which are just the successive terms of h[n] !!!!)

Since the number of terms 'M' must be finite, such filters belong to a 
class referred to as FINITE IMPULSE RESPONSE (FIR) Filters



Non-Recursive (FIR) Digital Filters
Hence:

I.R. h[n] ® bk

ZT(IR) H(Z) ®

FT(IR) H(W) ®
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bkZ
−k

k= o

M

∑

€ 

bk exp − jkΩ( )
k= o

M

∑

The trick to designing FIR filters is to obtain the best approximation 
to an ideal H(W) with as few bk's (or h[n] terms) as possible, typ. < 100 !

In practice FIR filters are slow (lot of computation - remember e.g., 
moving average) but they do have some nice redeeming properties



Non-Recursive (FIR) Digital Filters

Those properties are:

A recursive filter is specified in terms of Z-plane zeros only. Hence it is
inherently stable since it has no poles at which H(Z) could 'blow up' !!

The non-recursive filter has a linear phase characteristic

As the non-recursive filter has a FIR (finite number of h[n] terms), it can be 
made symmetric about n = 0 which yields a zero phase characteristic

Consider the impulse response shown in figure 5.3. (Lynn & Fuerst) -
a symmetric h[n] with a zero phase characteristic

The frequency transfer function is:
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H Ω( ) = bk exp − jkΩ( )
k= o

M

∑



Non-Recursive (FIR) Digital Filters

€ 

⇒ H Ω( ) = b
0
+ 2b

1
CosΩ+ 2b

2
Cos2Ω + 2b3Cos3Ω+ ........

€ 

= b0 + 2 bkCoskΩ
k=1

k=M

∑

H(W) is a real function which implies a zero phase shift at ALL frequencies !

To make the filter CAUSAL we simply shift h[n] by 'M' 
sampling intervals - (see Figure 5.3b)

As a result |H(W)| remains unchanged but 
FH(W) moves to a Linear Phase Characteristic



Non-Recursive (FIR) Digital Filters

Non-Causal, Low Pass Filter (Moving Average Impulse Response)

Consider: 2M + 1 point adjacent 
Channel averaging filter 
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H Ω( ) = bk exp − jkΩ( )
k=−M

M

∑
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⇒ H Ω( ) = b
0
+ 2b

1
CosΩ+ 2b

2
Cos2Ω + 2b3Cos3Ω+ ........

€ 

⇒ H Ω( ) =
1

2M +1
1+ 2CosΩ + 2Cos2Ω+ 2Cos3Ω+ ........+ 2CosMΩ{ }



Non-Recursive (FIR) Digital Filters

€ 

H Z( ) =
1
5
Z 2 + Z1 + Z 0 + Z−1 + Z−2{ }

Shift h[n] forward to begin at n = 0, then:
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∴H' Z( ) = Z −2H Z( )
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1+ Z −1 + Z −2 + Z −3 + Z−4{ }
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4th order pole at the origin
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H Z( ) = bkZ
−k

k=−M

k= +M

∑



Non-Recursive (FIR) Digital Filters

Zero's occur at Z = r.exp(-jW), W = 2pn/5, n = 1, 2, 3 & 4.

Note that there is no zero at W = 0 and W = 2p, H(W) = maximum there !

The pole - zero plot for this filter is shown on figure 5.5 (a). One can 
tighten up the frequency response by increasing the value of 'M' at the 
expense of slowing down the settling time of the output.

The pole-zero plot for a 21 term filter is shown in figure 5.5 (b).

There is a 'missing' zero at Z = 1, q = 0O in each case. In this way, |H(W)|
can have a maximum value at W = 0. As all '2M' zeros lie on the unit 
circle, true nulls are obtained in|H(W)| for all W = 2pn/M !

The 4th and 20th order poles at the origin have no effect on |H(W)|



Derivation of Highpass & Bandpass Filters 
from the Basic Lowpass (Moving Average) Filter

We have looked at a simple moving average filter where the h[n] values
have amplitudes of 1/(2M + 1). We see that its frequency response is 
that of a low pass filter with true nulls are frequencies of 2np/M. 

We require a bandpass filter (BPF) with centre frequency W0

We infer from experience that such a bandpass filter should have a
sinusoidal variation in its impulse response h[n] at frequency W0.

We will use the simple moving average filter as the base to build it !

So our first attempt at a BPF design should simple be to take the LPF
response and multiply (modulate) it with a function like Cos(nW0) !



Derivation of Highpass & Bandpass Filters 
from the Basic Lowpass (Moving Average) Filter

So we can write:

€ 

h[n]BPF = h[n]LPF .Cos nΩ0( )

So a BPF with a centre frequency of 6 samples/cycle is required -

The effect is shown in figure 5.6(a) and the corresponding frequency
response, obtained with the aid of Program 12 is shown in 5.6(b) -

It is clear that the frequency response is only an approximation (albeit
not a bad one) to a BPF with a centre frequency W0 = p/3.

Example: Consider a BPF (21 term, M = 10) given by:
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h[n] =
1

2M +1
.Cos nπ

3
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& 
,−10 ≤ n ≤10



Derivation of Highpass & Bandpass Filters 
from the Basic Lowpass (Moving Average) Filter

NB: For a properly sampled signal we can tune W0 from 
0 radians (dc) to p radians (max - 2 samples/cycle) i.e.,

from a LPF through a BPF to a HPF !!

However the main problem with this approach is that
we derive 'non-ideal' filters -

Better to turn the process around and derive (compute) the 
impulse response h[n] corresponding to the desired H(W)!



Derivation of Non-Recursive Filters 
using the Fourier Transform Method

Reminder: FT pair - for a discrete (sampled) signal array x[n], it's FT is:

€ 

X Ω( ) = x n[ ]
n= −∞

n=∞

∑ .exp − jnΩ( )

We can construct the original signal x[n] from its FT using: 

€ 

x n[ ] =
1
2π

X Ω( )
2π
∫ .exp jnΩ( )dΩ

Or, for a processor, its impulse response h[n] can be obtained from:

€ 

h n[ ] =
1
2π

H Ω( )
2π
∫ .exp jnΩ( )dΩ



Derivation of Non-Recursive Filters 
using the Fourier Transform Method

The key idea here is: Write out the H(W) you desire (ideal) - then derive
the corresponding  h[n] which in turn yields the bk coefficients of the 
corresponding non-recursive filter 

Two Problems:

1. It is not always possible to evaluate the integral expression:

2. The number of h[n] terms: A desirable H(W) may give rise to a h[n]
with many terms and hence a computationally expensive solution - a CPU
gas guzzler ! So a compromise between the H(W) desired and a tractable 
no of terms in the corresponding h[n] must be made. 

In relation to point 1 - we always choose simple, ideal filters with zero
or Linear Phase Characteristics

€ 

h n[ ] =
1
2π

H Ω( )
2π
∫ .exp jnΩ( )dΩ



-p +p-W1 +W1

H(W)
1

Derivation of Non-Recursive Filters 
using the Fourier Transform Method

Consider an ideal LPF with a cutoff frequency of W1

centred about zero, ergo a zero phase characteristic and H(W) is real
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h n[ ] =
1
2π

H Ω( )exp jnΩ( )dΩ
−π

+π

∫
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=
1
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Derivation of Non-Recursive Filters 
using the Fourier Transform Method

€ 

=
1
2πjn

exp jnΩ1( ) − exp − jnΩ1( ){ }

€ 

⇒ h n[ ] =
1
2πjn

Cos(nΩ1) + jSin(nΩ1) − Cos(nΩ1) + jSin(nΩ1)[ ]
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∴h[n] =
Ω1

π
Sin nΩ1( )
nΩ1

=
Ω1

π
Sinc nΩ1( )



Derivation of Non-Recursive Filters 
using the Fourier Transform Method

Not an unexpected result - the FT of a rectangular function (waveform)
in one domain (space, time etc.) is a 'Sinc' function in the complementary
domain - e.g., space domain - FT of a slit (x) is a Sinc (fx)

Example: Find and sketch the impulse response h[n] of an ideal Low
Pass Filter (LPF) with cutoff frequency W1 = p/5 (i.e., 10 samples/cycle)
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h n[ ] =
1
nπ

Sin nπ
5

# 
$ 

% 
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What is h[n] @ n = 0 ? - Use L'Hopital's Rule

It state that given:

€ 

h[x] =
y x( )
z x( )

€ 

,⇒ h 0[ ] =
dy
dx
dz
dx n= 0



Derivation of Non-Recursive Filters 
using the Fourier Transform Method

€ 

=
π
5Cos

nπ
5( )

π
n= 0

=
1
5

= 0.2

€ 

⇒ h 0[ ] =
d
dn Sin nπ

5( ){ }
d
dn nπ{ }

n= 0

n 0 1 2 3 4 5 6 7 8
h[n] 0.20000 0.187098 0.151365 0.100910 0.046774 0.00000 -0.031183 -0.043247 -0.037841

Cf: Figure 5.8(a) of Lynn and Fuerst

Repeat for filter with W1 = p/2 and Cf: Fig 5.8(b)!



Derivation of Non-Recursive Filters 
using the Fourier Transform Method

To obtain a non-recursive (FIR) filter with a centre frequency W0 and
a bandwidth of 2W1, we proceed as before (modulate h[n] for a low pass 
filter LPF) by a sinusoid at W0 !

€ 

h' n[ ] = h n[ ].Cos nΩ0( )

€ 

=
1
nπ

Sin nΩ1( )Cos nΩ0( )

We know already that:

Where the bk's are the values of the new impulse response h'[n]

€ 

H Ω( ) = b0 + 2 bkCos kΩ( )
k=1

k=M

∑

€ 

⇒ H Ω( ) = H Ω( ) =
Ω1

π
+ 2 h ' k[ ]Cos kΩ( )

k=1

k=M

∑



Derivation of Non-Recursive Filters 
using the Fourier Transform Method

Program No 12 - Lynn and Fuerst

Cf: Figure 5.9 and read pages 141 - 144 (programs 13 & 14 used) 

Remember that FIR filters do not suffer from phase distortion !

Measure of the quality of a FIR filter -

€ 

e = HD Ω( ) −HA Ω( ) 2dΩ
2π
∫

HD(W) - desired frequency response
HA(W) - actual frequency response



Windowing and the Effects of Truncation on h[n]

We already know that to obtain an ideal 'rectangular' filter response
HD(W), we require an infinite number of terms (bk) and hence an
Infinite Impulse Response  (IIR) - hD[n] - {cf: Figure 5.12(a)} 

Truncating an IIR to give a FIR is equivalent to multiplying the IIR
by a 'Window' function of finite width !

Such a window function (rectangular window) is shown in Figure 5.12(b)

So taking the 'ideal' or 'desired' impulse response hD[n] and multiplying
it by the window w[n], one obtains the 'actual' finite impulse response -

€ 

hA n[ ] = hD n[ ].w n[ ]



Windowing and the Effects of Truncation on h[n]

1. We alter the number of terms in hA[n] by the window length w[n]

2. We have symmetrized each h[n] to obtain a Real H(W) and a Zero 
Phase response. In real DSP systems we simply introduce the 
usual time shift and end up with linear phase charachteristics

3. Windowing is obtained by either:
(a) Time domain multiplication  - hA[n] = hD[n].w[n]
(b) Frequency domain convolution - HA(W) = HD(W)*W(W)

w[n] is sometimes referred to (especially in optical image processing)
as 'APODIZATION'.



Windowing and the Effects of Truncation on h[n]

Spectrum of a Rectangular Window 

€ 

W Ω( ) = w[n].exp(− jnΩ)
n= −∞

n= +∞

∑

€ 

= w[n].exp(− jnΩ)
n=−M

n= +M

∑

€ 

= 1.exp(− jnΩ)
n=−M

n= +M

∑

Consider a window with 2M+1 terms distributed about n = 0

Rectangular and so all w[n] values are equal (say = 1)

€ 

=1+ 2 Cos nΩ( )
n=−M

n= +M

∑
n = 1



Windowing and the Effects of Truncation on h[n]

Program no. 15 evaluates W(W) for 320 W values, 0<W<p

The data are plotted on a Log scale of 0 to -50 dB !

One can see from figure 5.13 for 21 [M=10] and 51 term [M=25] windows
that there are many sidelobes that exceed the -30 dB level - undesirable ! 

That said, rectangular windows provide the smallest rms error (e)
Intuitively one can see that it is the sharp cut-in/cut-off of rectangular 
windows which gives rise to a spread in frequency and a substantial no.
of sidelobes of appreciable level (or gain for windows/processors) -

So we might expect that a window with a more gradual switch-on/switch-
off might result in a narrower frequency spread - e.g., Triangular/Bartlett



Windowing and the Effects of Truncation on h[n]

Sidelobes -

The study/design of windows or apodization functions w[n] reduces to a 
study of sidelobes in HA(W) and W(W). Since sidelobes are small, e.g.,
< 10% of main lobe level for a rectangular window frequency transfer
function, HA(W) and W(W) are plotted on a log scale.

If G = Filter Gain, Then gain (dB) = 20 Log10(G) 

G 20Log10(G)
100 40
10 20
1 0
0.1 -20
0.01 -40
0.001 -60

Since we normalise G to unity, 
|H(W)|max =1 or 0 dB !

It is clear from figure 5.12 (c) that rectangular
windows give rise to unwanted sidelobes in HA(W)



Windowing and the Effects of Truncation on h[n]

Gibbs Phenomenon

With increasing window length the ripples in HA(W) bunch more closely
(around the design frequency W1) - cf: fig 5.9 again. The cut-in/cut-off
of the filter also becomes sharper.

Notice that lengthening the window does not reduce ripple magnitudes.
In the vicinity of a sudden transition in HA(W), the maximum ripple is 
~ 9%, no matter the length of w[n] -> Gibbs Phenomenon (~1900)



Windowing and the Effects of Truncation on h[n]

Triangular Window Function:

The Bartlett window function and magnitude spectrum are plotted 
(on a dB scale) on figure 5.14. 

We again choose 2M + 1 term values. They run from: 

€ 

1
M +1

@n = 0

€ 

1
M +1( )2

@n = ±Mto

€ 

W Ω( ) = w n[ ]exp − jnΩ( )
n= −M

n= +M

∑

€ 

= (M +1) + 2 (M)Cos Ω( ) + M −1( )Cos 2Ω( )............+ Cos MΩ( ){ }

ignoring the (M+1)2 normalisation factor, i.e.,  assuming 
amplitudes run from (M+1) at n =0 to 1 at n= ±M



Windowing and the Effects of Truncation on h[n]

€ 

W Ω( )
Ω= 0

=Wmax = (M +1) + 2 (M) + M −1( )............+1{ } = M +1( )2

So, to normalise the Triangular Window
gain to unity we divide w[n] by 1/(M+1)2

It is then known as a Bartlett Window function

€ 

w n[ ] =
M +1( ) − n
M +1( )2

,−M ≤ n ≤ +M

The corresponding frequency transfer (gain) function is given by:

€ 

W Ω( ) =
1

(M +1)2
+

2
(M +1)2

(M)Cos Ω( ) + M −1( )Cos 2Ω( )............+ Cos MΩ( ){ }



Windowing and the Effects of Truncation on h[n]

Note:
If you convolve two square pulses you will get a triangular window - so 
convolving two pulses of width M+1 terms will result in a Bartlett window
of width 2M + 1 term values ! Hence the spectrum of a triangular window 
is given by:

HT(W) = |HR(W)2| 
since time domain convolution º frequency domain multiplication

So sidelobes will drop as the square of the frequency away from the 
design frequency (or by a factor of 2 on a decibel scale) - Since the
first sidelobe in a square or rectangular window has a gain of -13.5dB,
the corresonding gain for the same lobe in a Barlett window is -27dB.



Windowing and the Effects of Truncation on h[n]

The main lobe (passband) is twice that of a square window 
for the same number of terms M - remember if you convolve 
two windows with M+1 terms you will get a window with 
2M+1 terms, i.e., a Triangular window with the same main 
lobe or bandwidth as a Rectangular window requires twice 
the number of bk (or h[n]) coefficients to implement with a
concomitant cost on CPU time.

Program 15 can be modified - substitute a Bartett w[n] for a rectangular
w[n] and see the result in Figure 5.14.

Note also:



Windowing and the Effects of Truncation on h[n]

Von Hann and Hamming Windows:

An ideal window has a narrow main lobe (passband) and no sidelobes !

Remember - HA(W) = HD(W) * W(W)
Actual = Desired Window
Filter Filter Transfer/gain
Response Response Function

For sharp transitions in HA(W)
=> W(W) must possess a narrow main lobe and no sidelobes

But ripples in HA(W) depend on the magnitude of the sidelobes in W(W) 
or 

smaller the sidelobes in W(W), the better the ripple performance of HA(W)  

HR(W), rectangular window has the narrowest main lobe for given 'M'
but the worst ripple performance - so a tradeoff between these two
characteristics (M and bandwidth) is  unavoidable !



Windowing and the Effects of Truncation on h[n]

von Hann and Hamming windows, though possessing a main lobe
width comparable to the Bartlett Window (for given value of M) they
have better sidelobe performance 

von Hann - 2M+1 terms

€ 

w n[ ] = 0.5 + 0.5Cos nπ
M +1
# 
$ 

% 
& 
,−M ≤ n ≤ +M

DC level  +  One Full Cosinusoidal Cycle - See Fig 5.15

Hamming
R W Hamming treated the DC offset and the cosine amplitude as 
variable quantities to optimise sidelobe performance -

€ 

w n[ ] = α + βCos
nπ
M

% 
& 

' 
( 
,−M ≤ n ≤ +M,α = 0.54 /β = 0.46



Windowing and the Effects of Truncation on h[n]

von Hann and Hamming windows

The Frequency Transfer (Gain) Function is as usual given by:

This operation is effected via Program no 16 - see Figure 5.16.
Codes computes:

€ 

w n[ ] = α + βCos
nπ
γ

& 

' 
( ) 

* 
,−M ≤ n ≤ +M

Input values: 

€ 

α,β& γ

Code computes w[n] (i.e., w[k] above) and then W(W) for 320
values and plots them on a dB scale. 

€ 

W Ω( ) = w n[ ]
n=−M

n= +M

∑ exp − jnΩ( ) = w 0[ ] + 2 w k[ ]Cos kΩ( )
k= +1

k= +M

∑



Windowing and the Effects of Truncation on h[n]

Cf: Fig 5.16, 51 Term [M = 25] Windows

1st Sidelobe Gain
• Triangular Window -27dB
• von Hann Window -32dB
• Hamming Window <-40dB

Program no. 17 - Filter Design/ Cf: Fig 5.17

Inputs: W0, W1 (Full band pass = 2W1), 2M + 1 and Window Type - it 
outputs h[n] values and a plot of |HA(W)| .vs. W plot on a dB vertical scale

(a) Rectangular Window
(b) von Hann Window
(c) Hamming Window

W0 = 2p/3 or 3 Samples/Cycle
2W1 (bandwidth) = p/18
M = 25 (51 Term Filter) 



Windowing and the Effects of Truncation on h[n]

1. The von Hann/Hamming windows show good sidelobe attenuation
2. Bandpass in both von Hann/Hamming windows is > 100, i.e., if
one specifies 2W1 < 100, one will not achieve it for even moderate M

Cf: Fig 5.18, 101 Term [M = 50] Hamming Window

W0 = 0 or LPF
2W1 (bandwidth) = 2p/5
M = 25 (51 Term Filter)

Note: All sidelobes < -50dB !!!! 



J. F Kaiser Window

€ 

w n[ ] =
I0 α 1− n

M( )2$ 
% 

& 
' 

I0 α( )
,−M ≤ n ≤ M

I0: Modified Bessel function of the first kind and zero order.

By varying a one can obtain windows of varying taper !!!

1. for a = 0, w[n] =1 for all 'n' - Rectangular Window
2. for a = 5.44 one gets a Hamming Window !

Windowing and the Effects of Truncation on h[n]



Designing a Kaiser Window:

Plot the ideal filter response (e.g., as in figure 5.19) HD(W) showing
acceptable ripple level (±d) and transition width (D). Then -

Since a controls the window taper (and hence the sidelobe gains or
levels), it is determined by the chosen values of d.

For given d (and hence a), D is determined by the window length 'M'.

If you know d and M we can can compute w[n] and hence 
W(W) =HA(W) {~HD(W)}

Windowing and the Effects of Truncation on h[n]



Designing a Kaiser Window: Implementation

1. ‘d' is expressed as an attenuation - A = -20Log10(d)

2. ‘a' is found from the empirical formulae:
‘a' = 0.1102(A - 8.7), A ³ 50
‘a' = 0.5842(A - 21)0.4 + 0.07886(A - 21), 21 < A < 50
‘a' = 0.0, A ≤ 20 - (Rectangular window)

Armed with 'A' and choosing 'D' (expressed as a fraction of 2p),
one can compute the final quantity needed as:

€ 

M ≥
A− 7.95
28.72Δ

rounded up to the nearest integer number !

See "Digital Filters, 2nd Edition, R W Hamming (1983)

Windowing and the Effects of Truncation on h[n]



Designing a Kaiser Window: Implementation

If M is too large, reduce 'A' by increasing 'd' or increase 'D' !

One can compute the Bessel function from a power series as:

Typically you need include only 10 or so terms (m=10) for
a good representation of the function 

€ 

I0 x( ) =1+ x
2( )m 1

m![ ]
2

m=1

m=∞

∑

Windowing and the Effects of Truncation on h[n]



Designing a Kaiser Window: Program No 18

Computes I0(x) for the first 20 terms:

€ 

x =α 1− n
M( )2 - numerator

€ 

x =α - denominator

To compute a Kaiser window - input d, D, Wp and Ws

Example - Figure 5.20
High Pass Filter (HPF) with a 60O bandwidth (BW)

(a) d = -30dB (0.0316), D = 15O, a = 2.1176 and M = 19
(b) d = -40dB (0.0100), D = 7.5O, a = 3.3954 and M = 54

Windowing and the Effects of Truncation on h[n]



FIR filter design boils down to a compromise between the sharpness
of the passband edges and magnitude of the sidelobes (for a given
number of bk or h[n] values

Equiripple filters (as the names implies) have sidelobes of approx-
imately similar gain, rather than a maximum near the main lobe and
decreasing as one moves away (toward higher frequency) from
the main lobe

The main features of equiripple filters are sketched in Fig. 5.21 -

The PASSBAND is: 0 ≤ W ≤  Wp
The ACCEPTABLE RIPPLE is: ±d1

The STOPBAND is: Ws ≤ W ≤  p
The ACCEPTABLE RIPPLE is: ±d2

Peaks and troughs
occur at W1, W2, W3,....

Equi-ripple Filters



€ 

H Ω( ) = bk exp − jkΩ( )
k=−M

k= +M

∑

€ 

= b0 + 2 bkCos kΩ( )
k=1

k=M

∑

€ 

= h 0[ ] + 2 h k[ ]Cos kΩ( )
k=1

k=M

∑

€ 

H Ω( ) = ckCos Ω( ) k
k=1

k=M

∑We can write this as:

So H(W) can be expressed as an Mth Order trignometric polynomial
which can display up to M-1 extrema within  0 ≤ W ≤  p !

Equi-ripple Filters

k=0



Note also that:

€ 

H' Ω( ) =
dH Ω( )
dΩ

= −Sin Ω( ) k.ckCos Ω( )k−1
k=1

k=M

∑

@ W=0 and W = p, Sin(W) = 0 and H'(W) = 0 at these frequencies.
Hence H(W) must be a max/min at these frequencies and there 
are a possible (M-1)+2 = M+1 extrema within the band 0 ≤ W ≤  p

There are 5 possible parameters that can be varied to design an
optical equiripple filter M, d1, d2, Wp and Ws

There are two popular approaches to Equiripple FIR filter design -
Hermann + Schuessler: Specify M, d1 and d2, Allow Wp and Ws to vary.
They developed a set of non-linear equations to be minimized.

Parks + McClellan: Specify M, d1/d2, Wp and Ws and let d1 vary. 

The main advantage of the H-S method is that D (=Wp - Ws) is fixed !

Equi-ripple Filters



Digital Differentiators
x[n] = displacement
x'[n] = velocity
Useful in anticipatory applications

First Order Difference (FOD):

€ 

FOD= x n[ ] − x n −1[ ]

€ 

H Ω( ) =1−exp jΩ( ) =1− Cos Ω( ) − jSin Ω( )

€ 

H Ω( ) = 1−Cos Ω( ){ }2 + Sin Ω( ){ }2[ ] = 2Sin Ω

2
$ 
% 

& 
' 

1/2

y[n] = x[n] - x[n-1]

h[n] = x[n] - x[n-1]



Digital Differentiators

In fact an ideal differentiator would have |H(W)| proportional to W, 
e.g., d/dn{Sin(nW)} = WCos(nW) - for W close to zero SinW() ~ W

€ 

⇒ H Ω( ) = 2Sin Ω

2
$ 
% 

& 
' 
≈ Ω

As W gets close to p, |H(W)| approaches 2! - it should be p

Note also that d/dn introduces a 90O phase shift no matter 
what the value of W is - so that phase shift/ transfer function
is constant, 90O for all W i.e.,

2
p

W

|H(W)|

p



Digital Differentiators

€ 

ΦH Ω( ) = Tan−1
ImH Ω( )
ReH Ω( )
% 

& ' 
( 

) * 
=
π
2

€ 

⇒
ImH Ω( )
ReH Ω( )
$ 

% & 
' 

( ) 
= Tan

π
2
+ 
, 

- 
. 
→∞

€ 

⇒ Re H Ω( )[ ] = 0

So we have that H(W) is purely imaginary !! 

€ 

H Ω( ) = jΩ



Digital Differentiators

Hence the  ideal differentiator is a purely imaginary operator !!

Up to this point we have made h[n] symmetric about n=0 and 
hence H(W) becomes real and specificed by cosines only -

A purely imaginary filter operator will be specificed by sine functions
only and it will have an impulse response h[n] which is antisymmetric
about n=0

Let's evaluate the h[n] corresponding to H(W) = jW

€ 

h[n] =
1
2π

H Ω( )
2π
∫ exp jnΩ( )dΩ

€ 

=
1
2π

jΩ
2π
∫ exp jnΩ( )dΩ



Digital Differentiators

Integrate by parts:

€ 

udv = uv − vdu∫∫

€ 

u = jΩ

€ 

⇒ h[n] =
1
2π

jΩ exp jnΩ( )
jn

− π

+π& 

' 
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) 

* 
+ −

1
2π

exp jnΩ( )
jn

jdΩ
−π

+π∫& 
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) 

* + 

€ 

⇒ h n[ ] =
1
2π

exp jnΩ( ) Ω

n
−
1
jn2
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+ 
− π

+π, 
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. 
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0 
1 
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⇒ h n[ ] =
1
2π

exp jnπ( ) π
n

+
j
n2

$ 
% 
& 

' 
( 
) 
− exp − jnπ( ) −π
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/ 0 
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dv = exp jnΩ( )dΩ



Digital Differentiators

For n odd, exp(jnp) = exp(-jnp) = -1
For n even, exp(jnp) = exp(-jnp) = +1

Hence we can write for an ideal digital differentiator:

€ 

h[n] =
−1
n
,n = ±1,3,5,........

h[n] =
1
n
,n = ±2, 4,6,........

€ 

h[0] =
1
2π

jΩexp jnΩ( )dΩ
−π

+ π∫ Ω= 0 = 0



Digital Differentiators

Cf: Figure 5.24 for h[n] -

Usual problem - we have trade off the number of coefficients (bk) or
h[n] values against an acceptable form of |H(W)| so that it is close
to |H(W)| ~ W frequency gain (transfer) function with weak sidelobes !

Solution - Use a Window (Apodize !!) 

Program No 19

Use Rectangular or Hamming window to truncate h[n] to 2M + 1 terms.
Cf: Figure 5.25 with M = 10 - increasing M improves transition neat p !



NEXT - IIR FILTERS


