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We will cover in this section 
How to compute the Z-Transform of a signal/ impulse response 

Poles and zeros of the Z-Transform of a signal or LTI processor 

Frequency analysis using the Z-Transform 



The Z-Transform 

Definition: 

€ 

X Z( ) = x[n].Z −n

n= 0

∞

∑
Origins: 
The Z-Transform is useful for looking at signals and systems 
in the frequency domain. It is not unlike the Laplace/Fourier  
Transforms except  that it has its origins in sampled data  
systems, while Laplace/ Fourier Transforms apply to analog  
(continuous valued) signals and systems. 

X(Z) is NOT concerned with x[n] prior to n = 0; Unilateral 

€ 

n= 0

n=∞

∑

X(Z) is effectively a power series in Z-1, with coefficients 
given by the values of x[n]. 



The Z-Transform 
Example: Find the Z-T of x[n] = 0.80, 0.81, 0.82. 0.83,.... 

X(z)  =1xZ0 + 0.8xZ-1 + 0.64xZ-2 + 0.512xZ-3 + ...... 
 =1+(0.8xZ-1)1+(0.8xZ-1)2 +(0.8xZ-1)3 +... 

€ 

⇒ X Z( ) =
1

1− 0.8Z−1 =
Z

Z − 0.8



The Z-Transform 
Example: Find the signal x[n] with Z-Transform:  

€ 

= Z−1 1+1.2Z−1( )−1

€ 

= Z−1 1+ −1.2Z−1( )1 + −1.2Z −1( )2 + −1.2Z−1( )3 + ..[ ]

€ 

=1.Z −1 −1.2Z−2 +1.44Z−3 + ..........

Coeff of 
x[1] 

Coeff of 
x[2] 

Coeff of 
x[3] 

By inspection: 
x[0] = 0 
x[1] = 1 
x[2] = -1.2 
x[3] = 1.44 
x[n] = (-1.2)n-1 

€ 

X Z( ) =
1

Z +1.2

€ 

X Z( ) =
1

Z +1.2
=

Z −1

1+1.2.Z−1



The Z-Transform 
1. Notice that although both signals theoretically contain an  
infinite number of sample values, their Z-Ts are very compact  

2. One can think of the of Z as a time-shift operator 
Multiplication by Z ≡ time advance by one sampling interval 
Division by Z ≡ time delay by one sampling interval 

Example: Time shifting a unit impulse  

The Z-T of a unit impulse is given by: 

€ 

X Z( ) = δ[n].Z −n

n= 0

∞

∑ = Z −n

n= 0
=1



The Z-Transform 

The Z-T of a unit impulse delayed by n0 sampling intervals is: 

€ 

X Z( ) = δ[n − n0 ].Z
−n

n= 0

∞

∑ = Z −n

n= n0
= Z −n0

Hence time shifting in Z-space becomes a simple operation - 
multiplication by   for time delay or     for time advance 
 
As the Z-T & F-T are related, the convolution theorem applies ! 

€ 

Z−n0

€ 

Z +n0

€ 

X Z( ) = x[n].Z −n

n= 0

∞

∑ , let Z = exp(jΩ) 

€ 

⇒ X Ω( ) = x[n]exp − jnΩ( )
n= 0

n=∞

∑



The Z-Transform 
If x[n] is an input signal and h[n] a processor response; 
we know that: 

Y(Ω) = X(Ω).H(Ω) 
and 

Y(Z) = X(Z).H(Z) 

 y[n] = x[n]*h[n]  
and hence 

Convolution Theorem applies to Z-Ts 



The Z-Transform 
Convolution Theorem - proof by example 

n 0 1 2 3 4 5 6 7 8
x[n] 1 -2 3 -1 -1 0 0 0 0
h[n] 2 1 -1 0 0 0 0 0 0
y[n] 2 -3 3 3 -6 0 1 0 0

€ 

X Z( ) = x[n].Z −n

n= 0

∞

∑

Direct convolution: y[n] = h[n]*x[n] 

Z-T Multiplication: Y(Z) = H(Z).X(Z) 

X(Z) = 1 - 2Z-1 + 3Z-2 - Z-3 - Z-4...... 
H(Z) = 2 + Z-1 -Z-2 

Y(Z)=H(Z).X(Z)=2 - 3Z-1 + 3Z-2 + 3Z-3 - 6Z-4 +0Z-5 + Z-6=  
 

€ 

y[n].Z −n

n= 0

∞

∑

By inspection: y[n] = 2, -3, 3, 3, -6, 0, 1, 0, 0,....... 



The Z-Transform 
A processor has an impulse response in Z-space given by: 

€ 

H Z( ) =
1

Z (Z −1)(2Z −1)
Find the (i) corresponding difference equation describing  
the action of the processor and (ii) its impulse response. 
(i) find y[n] 

€ 

H Z( ) =
1

Z (Z −1)(2Z −1)
=
Y Z( )
X Z( )

€ 

⇒ Y Z( ) Z (Z −1)(2Z −1)[ ] = X Z( )

2Z3Y(Z) – 3Z2Y(Z) + ZY(Z) = Y(Z) 



The Z-Transform 

Since multiplication by Z is ≡ time advance  
by one sampling interval we can write: 

2y[n+3] - 3y[n+2] + y[n+1] = x[n] 

Since this is a simple recurrence formula we  
can let n → n-3 without any loss of generalisation  

⇒ 2y[n] - 3y[n-1] + y[n-2] = x[n-3] 
or 

y[n] = 1.5y[n-1] - 0.5y[n-2] + 0.5x[n-3] 

Show that h[n] = 0, 0, 0, 0.5, 0.75, 0.875,.... 



The Z-Transform 
We can now study more complex processors, e.g.,  

€ 

H Z( ) =
Z 2 Z −1( ) Z 2 +1( )

Z + 0.8( ) Z 2 +1.38593Z + 0.9604( ) Z 2 −1.64545Z + 0.9025( )
=
Y Z( )
X Z( )

[Z5 - Z4 + Z3 - Z2].X(Z) =  [Z5 + 0.54048Z4 - 0.62519Z3 -  
   0.66354Z2 + 0.60317Z + 0.69341].Y(Z) 

x[n+5] - x[n+4] + x[n+3] - x[n+2] = 
y[n+5] + 0.54048y[n+4] - 0.62519 y[n+3] - 0.66354y[n+2] 

+ 0.60317y[n+1]+ 0.69341y[n] 

Since we can let n → n-5 without any loss of generalisation 
y[n] = -0.54048y[n-1] + 0.62519 y[n-2] + 0.66354y[n-3] - 

0.60317y[n-4] - 0.69341y[n-5] + x[n] - x[n-1] + x[n-2] - x[n-3] 



The Z-Transform The Z-Transform 
Steady State Response of a Processor - Final Value Theorem 

€ 

x[n] Z −Transform
→

X (Z )If 

€ 

⇒
Lim
n→∞

x[n] =
Lim
Z→1

Z −1
Z

& 
' 

( 
) 
X Z( )

Note that the Z-T of a unit step u[n] =  

€ 

Z
Z −1

Hence if u[n] is an input signal to a system with transfer  
function H(Z), then the output signal is given by: 

Step Response S[n] as 'n' gets very large ! 

€ 

Y (Z) =
Z
Z −1
# 

$ 
% 

& 

' 
( H(Z)



The Z-Transform 
Final Value Theorem 

€ 

⇒
Lim
n→∞

y[n] =
Lim
Z→1

Z −1
Z

& 
' 

( 
) 
Y (Z)

€ 

=
Lim
Z→1

Z −1
Z

$ 
% 

& 
' 

Z
Z −1
$ 
% 

& 
' 
H (Z) =

Lim
Z→1

H Z( )

€ 

Lim
n→∞

y[n] =
Lim
Z→1

H Z( )

Finally the Final Value Theorem States that: 

S[n]

S[n]



The Z-Transform 
Final Value Theorem: Example 

Consider  y[n] = 0.8y[n-1] + x[n] 
 
Then   h[n] = 0.8h[n-1] + δ[n] 
 
and 
 
 
Ergo    

€ 

H Z( ) =
Z

Z −0.8

€ 

Lim
n→∞

y[n] =
Lim
Z→1

H Z( ) =
1

1−0.8
= 5

Look back at step response of this processor in section 3 

S[n]



The Z-Transform 
Frequency Analysis using Z-Transforms 

Substituting Z = exp(jΩ) 

€ 

⇒ X Ω( ) = x[n]exp − jnΩ( )
n= 0

n=∞

∑

The Z-Transform is most useful not just for compact 
description of LTI processors with long/infinite impulse 
reponse but also for inferring their frequency response  

€ 

X Z( ) = x n[ ].Z−n

n= 0

n=∞

∑



The Z-Transform 
Poles and zeros of X(Z): 
 
X(Z) is always a rational function, i.e., it can always be  
written as a ratio of two polynomials in Z. 

Hence on can write: 

€ 

X Z( ) =
N Z( )
D Z( )

= K . Z − Z1( ). Z − Z2( ). Z − Z3( ).........
Z − P1( ). Z − P2( ). Z − P3( ).........

Where  Z1, Z2,.....  are the Zeros of X(Z) 
and   P1, P2,.....  are the Poles of X(Z) 

If x[n] ∈ R ⇒ Poles & Zeros are either real or occur in 
  complex conjugate pairs 



The Z-Transform 
Z-Plane and the Argand Diagram: 

It is often useful to plot the poles and zeros of a Z-T on an 
Argand diagram. In fact, a trained eye will deduce the salient 
features of a processor response from the plot quite easily ! 

Convention 

Zeros are plotted as        symbols 
Poles are plotted as   X   symbols 

Example: Plot the poles and zeros of the following ZT:  

€ 

X Z( ) =
Z 2 Z −1.2( ) Z +1( )

Z −0.5 + j0.7( ) Z − 0.5 − j0.7( ) Z −0.8( )



The Z-Transform 
Example: Poles and zeros 

X
X

X

Re

Im

Unit Circle 

By inspection we have: 
Zeros @ Z= 0 (2 of), Z = 1.2 & Z = -1.0 & 
Poles @ Z= 0.8, Z = 0.5-j0.7 & Z = 0.5+j0.7 



The Z-Transform 
Inferring LTI System Stability from Pole-Zero Plots 

Consider a digital LTI processor with ZT:  

€ 

H Z( ) =
Y Z( )
X Z( )

Clear that Y(Z) {and concomitantly the processor output y[n]} 
determines the location of all zeros of the ZT and that X(Z)  
and {hence x[n]} determines the locations of the poles. 

€ 

H Z( ) =
Y Z( )
X Z( )

=
1

Z −α
Say that 

System has no zeros and one pole at Z = α 

  ZY(Z) - αY(Z) = X(Z) 
 ⇒  y[n+1] - αy[n] = x[n]  
⇒  y[n] = αy[n-1] + x[n-1] 

Find h[n] ! 



The Z-Transform 

€ 

H Z( ) =
Y Z( )
X Z( )

=
1

Z −α

⇒  h[n] = αh[n-1] + δ[n-1] 

⇒  h[n] =0, 1,α, α2, α3, α4,............   

If α > 1, h[n] grows without limit, ⇒ H(Z) = unstable system. 

Hence, if α < 1, h[n] may be infinite but at least it is  
bounded which implies H(Z) describes a stable system. 

Conclusion: A system is stable only if the poles  
(i.e., all poles) lie within the unit circle ! 

Clearly the same is true of signals: one or more poles  
outside the unit circle  ⇒ unbounded signal 



Pole locations in Polar Coordinates 
The Z-Transform 

Two poles lying on a circle of 
radius 'r' making and angle θ   
w.r.t the Re(al) axis ⇒ So pole 
locations are r.[exp(jθ)] and  
r.[exp(-jθ)] 

x 

x 

r θ 

€ 

H Z( ) =
Y Z( )
X Z( )

=
1

Z − r.exp jθ( )[ ] Z − r.exp − jθ( )[ ]
So  

€ 

=
1

Z 2 −2rZCosθ + r 2( )



The Z-Transform 
Pole locations in Polar Coordinates 

€ 

⇒ Y (Z ). Z 2 −2rZCosθ + r 2( ) = X(Z )

For a bounded (finite) output, r<1 ⇒ system is stable 
Example Application - See figure 4.2 and equation 4.14 

€ 

H Z( ) =
Z 2 Z −1( ) Z 2 +1( )

Z + 0.8( ) Z 2 +1.38593Z + 0.9604( ) Z 2 −1.64545Z + 0.9025( )
Two Re Zeros @ Z=0   One Re Pole @ Z=-0.8 
One Re Zero @ Z=1 
Two Im Zeros @ Z=±j 

€ 

⇒ y[n] = 2rCosθy[n −1]− r 2y[n −2]+ x[n −2]



The Z-Transform 
Pole locations in Polar Coordinates 

Now compare; 

€ 

1
Z 2 −2rZCosθ + r 2( )

€ 

1
Z 2 +1.38593Z + 0.9604( )with 

r2 = 0.9604 and 2rCosθ = - 1.38593 
⇒  r = 0.98 and θ = 45O 

€ 

1
Z 2 −1.64545Z + 0.9025( )

yields r = 0.95 and θ = 150O 

Hence the system is stable because ALL r < 1 ! 



The Z-Transform 
Note: 
(a) Comments on system stability apply only to poles and 
there is no dependence on zeros of the transform 
 
(b) Zeros at the origin of the Z-plane produce only a time  
advance or delay but they have no other effect  

Consider again: 

€ 

H Z( ) =
1

Z 2 −2rZCosθ + r 2( )

€ 

⇒ y[n] = 2rCosθy[n −1]− r 2y[n −2]+ x[n −2]

So that y[0] = 0 and y[1] = 0 

We can force y[n] to start @ n=0 by using (b) above ! 



The Z-Transform 
Simply apply the time advance operator 'Z' twice: 

H'(Z) = Z2.H(Z) 

€ 

⇒ H ' Z( ) =
Y Z( )
X Z( )

=
Z 2

Z 2 − 2rZCosθ + r 2( )

€ 

⇒ y[n] = 2rCosθy[n −1]− r 2y[n −2]+ x[n]

€ 

⇒ Z 2 − 2rZCosθ + r2( )Y (Z) = Z 2X Z( )



The Z-Transform 
The Fourier Transform in the Z-Plane: Geometrical Methods 

Setting Z = exp(-jΩ) we transform the Z-T into the the F-T 

Where are the values of Z = exp(jΩ) in the Z plane ? 

Ω1

 Ω = Ω1, Ω1 + 2π, Ω1 + 4π,....... 

 Ω = 0, 2π,4π,.......  Ω = π,3π, 5π....... 

Magnitude r = 1; they lie on the unit circle 



The Z-Transform 

Ω1 = 0 corresponds to the point Z = (1, j0)  
on the Argand Plane. 

 
As Ω increases, one moves anticlockwise  

around the unit circle; 
@ Ω = π, Z = (-1, j0) 

We know from Fourier Analysis that the FT repeats with a 
period of 2π. The Z-Transform (Z-plane) represention shows 
this automatically as any one point on the unit circle (1, Ω) 
can represents all frequencies Ω + 2nπ, n= 0, 1, 2, 3, 4, ...... 



The Z-Transform 

Consider the following LTI Processor with Z-Transform; 

€ 

H Z( ) =
Z − 0.8
Z + 0.8

Setting Z = exp(jΩ) 

€ 

⇒ H Ω( ) =
exp jΩ( ) − 0.8
exp jΩ( ) + 0.8

x

Ω1

P1 Z1



The Z-Transform 
The numerator of H(Z) is determined by the magnitude  
(length) of the Zero Vector |Z1| and the denominator by  
the pole length |P1|. 

So the magnitude/gain of the  
frequency transfer function 
@ Ω = Ω1  

The phase shift or 
phase transfer function  
@ Ω = Ω1  

x

Ω1

350 1100 

€ 

ΦH Ω( )
Ω1

=1100 − 350 = 750

€ 

H Ω( )
Ω1
∝
Z1
P1



The Z-Transform 

By simple extension of this graphical method one can map 
the frequency transfer function of a simple processor 

Ω Z1 P1 |H(Ω)|
0 0.2 1.8 0.11

π/2 1.28 1.28 1.00
π 1.8 0.2 9.00

2 π 0.2 1.8 0.11

From figure 4.6 one can see that as one travels around the 
unit circle (increasing frequency Ω), the gain |H(Ω)| goes 
through a maximum when Z = exp(jΩ) passes near a pole, 
here e.g., @ Ω = π. 



The Z-Transform 

€ 

H Z( ) =
Z 2 Z −1( ) Z 2 +1( )

Z + 0.8( ) Z 2 +1.38593Z + 0.9604( ) Z 2 −1.64545Z + 0.9025( )

More complex processor- consider again: 

Zeros @ Z=0 (2nd order), Z =1 and Z = ±j 
Poles @ Z = -0.8 {Real, Ω = 1800 (π)}, a pole pair close to  
the unit circle @  Ω = ±450 (π/4) and a second pole pair  
at Ω = ±1500 (5π/6) and also close to the unit circle. 

Zeros: Expect 'true nulls' in the frequency response at Ω 
values specifying their location, here 0 and π 
 
Poles: Expect peaks in the frequency response (gain) at Ω 
values specifying their location, here π/4, 5π/6 and π 



The Z-Transform 

We can break more complex systems with many zeros and 
poles into simpler systems as follows: 

€ 

H Ω( ) = K .
Z1 Ω( ) .Z2 Ω( ) .Z3 Ω( ) ........
P1 Ω( ) .P2 Ω( ) .P3 Ω( ) ........

where K is a constant 

€ 

ΦH Ω( ) = ΦZ1 Ω( ) +ΦZ 2 Ω( ) +ΦZ 3 Ω( ).....[ ] − ΦP1 Ω( ) +ΦP2 Ω( ) +ΦP3 Ω( ).....[ ]

€ 

ΦZn Ω( ) - Phase vector of the nth zero of H(Z) 

€ 

ΦPn Ω( ) - Phase vector of the nth pole of H(Z) 



The Z-Transform 
1st and 2nd order LTI Processors 

Any LTI processor  

€ 

H Z( ) = K . Z − Z1( ) Z − Z2( ) Z − Z3( )..........
Z − P1( ) Z − P2( ) Z − P3( )...........

may be represented by cascading a series of 1st and 2nd 
order LTI processor transfer functions 

€ 

H1 Z( ) =
Z − Z1( )
Z − P1( )

1st order Z1 and P1 ∈ R 

2nd order 

€ 

H2 Z( ) =
Z − Z2( ) Z − Z3( )
Z − P2( ) Z − P3( )

Z2, Z3, P2, P3 ∈ R or occur as complex conjugate pairs 



The Z-Transform 
1st and 2nd order LTI Processors - Frequency Selectivity 

Poles placed at well defined Ω values (frequencies) and 
located near the unit circle will produce sharp peaks in the  
frequency response of a processor. An equal number of zeros 
placed at the Z-plane origin ensures that h[n] starts @ n=0  

We write that a real pole for a 1st order procesor  
is located at Z = α 
 
The complex conjugate pole pair for a 2nd order processor 
are located at Z = r.exp(jθ) and Z = r.exp(-jθ)  



The Z-Transform 

Hence one can write: 

€ 

H1 Z( ) =
Z

Z −α( )

€ 

H2 Z( ) =
Z 2

Z − r.exp( jθ){ } Z − r.exp(− jθ){ }

€ 

H Z( ) =
Z 2

Z 2 −2rZCosθ + r 2( )



The Z-Transform 
1st order   Already looked at these in detail: (see Fig 4.9) 

 
 0 < α < 1 ⇒ Low pass filter 
-1 < α < 0 ⇒ High pass filter 

€ 

H1 Z( ) =
Z

Z −α( ) , Z → exp(jΩ) 

€ 

⇒ H1 Ω( ) =H1 Z( )
Z= exp( jΩ )

=
exp( jΩ)

exp( jΩ)−α

|H1(Ω)| has a maximum value (or gain) @ Ω = 0 

|H1(Ω)| has a minimum value (or gain) @ Ω = π 

€ 

Gmin =
exp jπ( )

exp jπ( ) −α
=

1
1+α

€ 

Gmax =
exp j0( )

exp j0( ) −α
=

1
1−α



The Z-Transform 
1st order cont'd 
So the closer α is to 1 (i.e., the closer the pole is to the unit 
circle), the larger the maximium gain (Gmax), the smaller 
the minimum gain (Gmin) and so the narrower the bandwidth  
of the filter. 

In summary, as one moves the pole of a 1st order filter  
closer to the unit circle: 
 
(i)  The peak gain increases 
(ii)  The bandwidth decreases 
(iii) The impulse response (1, α, α2, α3, α4,...) slows 

(ii) and (iii) ⇒ Narrow the bandwidth and slow the processor 



The Z-Transform 
2nd order filters 

€ 

H2 Z( ) =
Z 2

Z 2 −2rZCosθ + r 2( )

X

X

The processor has complex conjugate pole pairs  
@ Z=r.exp(jθ) and a 2nd order zero at the origin (Z=0) 

θ

θ determines the centre frequency of the processor /signal 
and 'r' determines the 'selectivity' or bandwidth 



The Z-Transform 
2nd order filters 

€ 

H2 Z( ) =
Y Z( )
X Z( )

=
1

1−2rCosθZ−1 + r2Z −2( )

€ 

⇒ y[n] = 2rCosθy[n −1]− r 2y[n −2]+ x[n]

Letting Z = exp(jΩ) ⇒   

€ 

H2 Z( ) =
1

1−2rCosθ exp(− jΩ)+ r 2 exp(− j2Ω)( )

€ 

H2 Ω( ) =
1

1−2rCosθCosΩ+ r 2Cos2Ω( )2 + 2rCosθSinΩ− r2Sin2Ω( )2[ ]
1/ 2

Hence: 

(Ω) 



The Z-Transform 
Maximum gain occurs at the centre frequency, Ω = θ. 

€ 

H2 θ( ) =Gmax =
1

1−2rCos2θ + r2Cos2θ( )2 + 2rCosθSinθ − r2Sin2θ( )2[ ]
1/ 2

€ 

1−2rCos2θ + r 2Cos2θ( )

€ 

2rCosθSinθ − r 2Sin2θ( )

Let A= 

Let B= 

€ 

⇒ Gmax =
1

A2 + B2

Program 11 used to study the effect of r, θ for 2nd O systems 
using the expressions above - very powerful - write your own 

See Figure 4.11 for typical results 



The Z-Transform 
Figure 4.11 examples 

(a)  Cascaded 1st order LPFs: r = 0.9, max gain @ Ω = θ = 00 (dc) ! 

(b) BPF centred @ Ω=θ=250 (~15 Samp/cyc.), r=0.99 (narrow passband) 
 
(c) BPF with wide bandpass (r = 0.8) centred @ Ω=θ=1100 (~3 Samp/cyc.) 
 
(d) Cacaded 1st order HPFs: r=0.9, max gain @ Ω=θ=1800 (2 Samp/cyc.) 
 
Note: When the pole 'r' value is close to '1', you should also 
expect rapid variations in the phase transfer function 
ΦH(Ω) as Ω sweeps through the design frequency 'θ' ! 
 
Reminder: In sampled data systems we specify 'frequency' 
in samples/cycles or equivalently 'radians' or 'degrees' ! 



The Z-Transform 
Effect of initial conditions on the Z - Transform 

Useful in two cases: 
(a) The system may not have settled following the  

 application of a prior input 
 
(b) The input signal was applied prior to n = 0 and it is  

 required to assess its subsequent effects on the output 
Consider the following: 
If:  x[n]   →   X(Z) 
Then:  x[n - n0]  →   X(Z).Z-n0 

We can in fact write: x[n - n0].u[n - n0] → X(Z).Z-n 

Multiplication by u[n - n0] ensures that x[n] is zero for n<n0 



The Z-Transform 
Suppose that we define x1[n] as a signal identical to x[n] 
but not necessarily starting @ n = 0  

i.e.,  x1[n]  →  x[n - 1] 

€ 

X1 Z( ) = x[n −1].Z− n
n= 0

n=∞

∑Then: 

€ 

= x[−1]+ x[n −1].Z− n
n=1

n=∞

∑

€ 

x n −1[ ].Z−n =
n=1

n=∞

∑ Z−1 x n −1[ ].Z−(n−1)

n=1

n=∞

∑But: 

€ 

= x[−1]+ Z−1 x n[ ].Z−n

n= 0

n=∞

∑
% 
& 
' 

( 
) 
* 

= x[−1]+ Z−1X(Z)So X1(Z) 

And also: 

€ 

Z−1 x n −1[ ].Z−(n−1) =
n=1

n=∞

∑ Z−1 x n[ ].Z−(n )

n= 0

n=∞

∑



The Z-Transform 
Similarly it can be shown that: 

If:  x2[n] = x[n - 2] 

Then: 

Example - Consider: 

€ 

y[n] = α.y[n −1] + x[n]

€ 

y[n] −α.y[n −1] = x[n]We can rewrite as: 

Taking ZTs: 

€ 

Y Z( ) −α y[−1]+ Z−1.Y Z( ){ } = X Z( )

€ 

⇒ Y Z( ) 1−α.Z−1{ } = X Z( ) +α .y[−1]

€ 

⇒ Y Z( ) =
X Z( ) +α .y[−1]
1−α.Z−1( )

€ 

X2(Z) − x[−2]+ x[−1]Z −1 + Z−2X(Z)



The Z-Transform 
Case in point: 

€ 

y[−1] = −
1
α

€ 

x[n] = δ[n]

€ 

⇒ X Z( ) =1

We have that: 

€ 

⇒ Y Z( ) =
X Z( ) +α .y[−1]
1−α.Z−1( )

€ 

⇒ Y Z( ) =
X Z( ) +α −

1
α

% 
& 

' 
( 

1−α.Z −1( )
= 0

i.e., y[n] = 0 for all n> 0 !! 
What has happened to the signal ? - we had a system with  
impulse response h[n] = 1, α, α2, α3, α4,..... 



The Z-Transform 

So simply having an initial (prior) condition like y[n]=-1/α, the 
impulse response can be set to zero ! The initial (prior) 
state of the system exactly cancels the impulse response 
so that the filter output power becomes identically zero !!  



The Z-Transform 

So importantly, h[n] is the impulse response of a processor 
only if all initial conditions are zero ! 

i.e., H(Z) = Y(Z)/X(Z) ONLY under zero initial conditions 

€ 

y[n] −α.y[n −1] = x[n]Using 

Problem (for you): 

compute h[n] for x[n] = 
δ[n] = 1 and y[-1] = 1/α



The Z-Transform 
Example 

T T 

0.2 

0.48 

+ 

+ 
+ 

- 

x[n] y[n] 

From the above block diagram we have that: 
y[n] =-0.2y[n-1] + 0.48y[n-2] + x[n] 



The Z-Transform 

Taking ZTs of both sides we get for non-zero initial conditions:  

Find y[n] when x[n] = δ[n] for  
(i)  Zero initial conditions 
(ii)  y[-1] = -1.25 and y[-2] = -0.52083 

€ 

Y Z( ) =
X Z( ) − 0.2y[−1] + 0.48y[−2]+ 0.48y[−1]Z −1

1+ 0.2Z−1 −0.48Z−2

Case (i): Zero initial conditions 

x[n] = δ[n], ⇒ X(Z) = 1 and y[n] = h[n] = 0, for all y[n] (n<0). 

€ 

⇒ Y Z( ) =
1

1+ 0.2Z−1 − 0.48Z−2( )
=

Z 2

Z 2 + 0.2Z − 0.48( )



The Z-Transform 

€ 

⇒ Y Z( ) =
Z 2

Z + 0.8( ) Z − 0.6( )
=

AZ
Z + 0.8( )

+
BZ

Z −0.6( )

Multiply both sides by (Z + 0.8)(Z - 0.6). Values of A & B 
must be true for all Z. Try poles of Y(Z), i.e., Z = -0.8 & 0.6.    

€ 

⇒ Z 2 = AZ Z −0.6( ) + BZ Z + 0.8( )

Z = 0.6,  ⇒ B(0.6)(1.4) = 0.36,  ⇒ B = 0.4286 
Z = -0.8,  ⇒ A(-0.8)(-1.4) = 0.48,  ⇒ A = 0.5714 

€ 

⇒ Y (Z ) =
0.5714.Z
Z + 0.8( )

+
0.4286Z
Z − 0.6( )Hence 



The Z-Transform 
Using table 4.1 on Inverse Z-Transforms we have that: 

€ 

Z
Z − a

→ an.u[n]

See figure 4.13(b) 

€ 

⇒ y[n] = 0.5714. −0.8( )n u[n] + 0.4286. 0.6( )n u[n]



The Z-Transform 

(ii) Non-zero initial conditions: y[-1] = -1.25 & y[-2] = -0.52083 

€ 

Y Z( ) =
X Z( ) − 0.2y[−1] + 0.48y[−2]+ 0.48y[−1]Z −1

1+ 0.2Z−1 −0.48Z−2

€ 

Y Z( ) =
X Z( ) − 0.2[−1.25]+ 0.48[−0.52083] + 0.48[−1.25]Z−1

1+ 0.8Z−1( ) 1−0.6Z−1( )

€ 

Y Z( ) =
X Z( ) + 0.25 − 0.25 −0.6Z−1

1+ 0.8Z−1( ) 1− 0.6Z−1( )

€ 

⇒ Y Z( ) =
1

1+ 0.8Z−1( )
=

Z
Z + 0.8

€ 

⇒ y[n] = −0.8( )n u[n]
See figure 4.13(c) 


