PS403 - Digital Signal processing

IV. DSP - The Z-Transform
Key Text:

Digital Signal Processing with Computer Applications (2"4 Ed.)
Paul A Lynn and Wolfgang Fuerst, (Publisher: John Wiley & Sons, UK)

We will cover 1n this section
How to compute the Z-Transform of a signal/ impulse response
Poles and zeros of the Z-Transform of a signal or LTI processor

Frequency analysis using the Z-Transform




The Z-Transform

Definition: X( Z) =

Origins:

The Z-Transform is useful for looking at signals and systems
in the frequency domain. It is not unlike the Laplace/Fourier
Transforms except that it has its origins in sampled data
systems, while Laplace/ Fourier Transforms apply to analog
(continuous valued) signals and systems.

X(Z) is NOT concerned with x[n] prior to n = 0; Unilateral 2
n=0

X(2) is effectively a power series in Z, with coefficients
given by the values of x|[n].




The Z-Transform
Example: Find the Z-T of x[n] = 0.89, 0.87, 0.82. 0.83,....
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The Z-Transform
1

Example: Find the signal x[n] with Z-Transform: X(z) = 7412
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=1Z7"'-12Z7+14477 + By inspection:
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The Z-Transform

1. Notice that although both signals theoretically contain an
infinite number of sample values, their Z-Ts are very compact

2. One can think of the of Z as a time-shift operator
Multiplication by Z = time advance by one sampling interval
Division by Z = time delay by one sampling interval

Example: Time shifting a unit impulse

The Z-T of a unit impulse is given by:

X(Z) = ié[n]Z'" =7




The Z-Transform

The Z-T of a unit impulse delayed by ny sampling intervals is:

X(z)=Yoln-nlz"=2z"| =z
n=0

n=ny

Hence time shifting in Z-space becomes a simple operation -
multiplication by Z " for time delay or Z™™ for time advance

As the Z-T & F-T are related, the convolution theorem applies !

X(Z) = i x[n]Z7", let Z = exp(jQ)




The Z-Transform

If x[n] is an input signal and h[n] a processor response;
we know that:

y[n] = x[n]*h[n]
and hence
Y(Q2) = X(2).H(£2)
and
Y(Z) = X(Z).H(Z)

Convolution Theorem applies to Z-Ts




The Z-Transform

Convolution Theorem - proof by example
Direct convolution: y[n] = h[n]*X[n]

Z-T Multiplication: Y(Z) = H(Z).X(Z)

X(Z)= Y x[nlZ™"  X(Z)=1-2Z"+322-23%-74
1=0 H(Z) =2 + 21 -Z2

Y(Z)=H(Z).X(Z)=2 - 3Z1 + 3Z2 + 3Z3 - 624 +0Z5 + Z6=), M1 Z”"

By inspection: y[n] = 2, -3, 3, 3,-6,0, 1,0, O,




The Z-Transform

A processor has an impulse response in Z-space given by:
1
H(Z) =
Z(Z-1)(2Z -1)

Find the (i) corresponding difference equation describing
the action of the processor and (ii) its impulse response.

(i) find y[n]

H(z) 1 Y(Z)

CZ(@Z-D2Z-1)  X(2)

=Y(Z)|zZz-1)2z-1]=X(2)

273Y(7) — 372Y(Z) + ZY(Z) = Y(Z)




The Z-Transform

Since multiplication by Z is = time advance
by one sampling interval we can write:

2y[n+3] - 3y[n+2] + y[n+1] = X[n]

Since this is a simple recurrence formula we
can let n — n-3 without any loss of generalisation

=2y[n] - 3y[n-1] + y[n-2] = X[n-3]
or

y[n] = 1.5y[n-1] - 0.5y[n-2] + 0.5x[n-3]

Show that h[n] = 0, 0, 0, 0.5, 0.75, 0.875,....




The Z-Transform
We can now study more complex processors, e.g.,

H(2) 7 (z-1)(Z° +1) v(2)
(Z+0.8)(2° +1.38593Z+0.9604)(Z* - 1.64545Z +0.9025)  X(Z)

[Z5 - Z4 + 73 - 72].X(Z) = [Z5 + 0.54048Z% - 0.62519Z3 -
0.66354Z2 + 0.60317Z + 0.69341].Y(Z)

X[n+3] - x[n+4] + X[n+3] - Xx[n+2] =
y[n+5] + 0.54048y[n+4] - 0.62519 y[n+3] - 0.66354y[n+2]
+ 0.60317y[n+1]+ 0.69341y[n]

Since we can let n — n-5 without any loss of generalisation

y[n] = -0.54048y[n-1] + 0.62519 y[n-2] + 0.66354y[n-3] -
0.60317y[n-4] - 0.69341y[n-5] + X[n] - X[n-1] + X[n-2] - X[n-3]




The Z-Transform
Steady State Response of a Processor - Final Value Theorem

Step Response S[n] as 'n' gets very large !

Z —Transform

If x[n] X(Z)

—>

Lim Lim (Z -1\
= x[n]=
n —> 00 "] Z—1\ 7z )

X(2)

Note that the Z-T of a unit step u[n] = 71

Hence if u[n] is an input signal to a system with transfer
function H(Z), then the output signal is given by:




The Z-Transform

Final Value Theorem
Lim _ Lim (Z -1\
n—oo> M7 7
Lim (Z-1\( Z Lim

71\ z /\Z—llH@=ZelH(Z)

Y(2)

==

Finally the Final Value Theorem States that:

Lim

= H\Z
——sin] = ——~H(2)




The Z-Transform

Final Value Theorem: Example

Consider
Then

and

Ergo
Lim

1 —= 00

y[n] = 0.8y[n-1] + x[n]
h[n] = 0.8h[n-1] + &[n]

H(Z) 2

" 7-08

Lim H(Z)= 1 _
/ —1 1-0.8

S[n] =

5

Look back at step response of this processor in section 3




The Z-Transform

Frequency Analysis using Z-Transforms

n=OO

E x[n]Z‘”

n=0
Substituting Z = exp(j2)

= X(Q) = Iiox[n]exp(—jng)

The Z-Transform is most useful not just for compact
description of LTI processors with long/infinite impulse
reponse but also for inferring their frequency response




The Z-Transform
Poles and zeros of X(Z2):

X(Z) is always a rational function, i.e., it can always be
written as a ratio of two polynomials in Z.

Hence on can write:

Where are the Zeros of X(2)
and are the Poles of X(Z)

If Xx[n] € R = Poles & Zeros are either real or occur in
complex conjugate pairs




The Z-Transform
Z-Plane and the Argand Diagram:

It is often useful to plot the poles and zeros of a Z-T on an
Argand diagram. In fact, a trained eye will deduce the salient
features of a processor response from the plot quite easily !

Convention

Zeros are plotted as (O symbols
Poles are plotted as X symbols

Example: Plot the poles and zeros of the following ZT:

(2) - ZN(Z2-12)(Z +1)
(Z-0.5+j0.7)(Z-0.5-0.7)(Z -0.8)




The Z-Transform
Example: Poles and zeros

Im
m/x

X Re
W\X

—Unit Circle

By inspection we have:
Zeros@Z=0(20f),Z2=12&2Z=-1.0 &

Poles @ Z=0.8, Z

= 0.5-0.7 & Z = 0.5+j0.7




The Z-Transform
Inferring LTI System Stability from Pole-Zero Plots

Y(2)

Consider a digital LTI processor with ZT: H(Z)=——+

(2)

Clear that Y(Z) {and concomitantly the processor output y[n]}
determines the location of all zeros of the ZT and that X(Z)
and {hence x[n]} determines the locations of the poles.

Say that H(Z) =

Y(z) 1

System has no zeros and one pole at Z = «

X(2) Z-a

ZY(Z) - aY(Z) = X(2)
= y[n+1] - ay[n] = x[n]
= y[n] = ay[n-1] + x[n-1]

Find h[n] !




The Z-Transform

1
X(2) Z-a

H(Z) =

=> h[n] = ah[n-1] + §[n-1]
= h[n] =0, 1,0, a?, &2, a?,

Hence, if a < 1, h[n] may be infinite but at least it is
bounded which implies H(Z) describes a stable system.

If o > 1, h[n] grows without limit, = H(Z) = unstable system.

Conclusion: A system is stable only if the poles
(i.e., all poles) lie within the unit circle !

Clearly the same is true of signals: one or more poles
outside the unit circle = unbounded signal




The Z-Transform
Pole locations in Polar Coordinates

N 0 Two poles lying on a circle of
\ radius ' making and angle 6

w.r.t the Re(al) axis = So pole

locations are r.[exp(j6)] and
r.[exp(-j0)]

1

1
(Z2 —2rZCosb + r2)




The Z-Transform
Pole locations in Polar Coordinates

= Y(Z)(Z* -2rZCos8+1°) = X(Z)

= y[n]=2rCosOy[n-1]-r’y[n -2]+ x[n -2]

For a bounded (finite) output, r<1 = system is stable
Example Application - See figure 4.2 and equation 4.14

” 217 +)
)= (Z +0.8)(Z° +1.38593Z +0.9604)( Z* - 1.64545Z +0.9025)

Two Re Zeros @ Z=0 One Re Pole @ Z=-0.8
One Re Zero @ Z=1
Two Im Zeros @ Z==]




The Z-Transform
Pole locations in Polar Coordinates

Now compare;

1 1
(22 —2rZCosb + r2)

with (2> +1.38593Z+ 0.9604)

r2 = 0.9604 and 2rCos6 = - 1.38593
— r=0.98 and 6 = 450

1
(22 ~1.645457 + 0.9025)

yields r = 0.95 and 6 = 150°

Hence the system is stable because ALLr< 1|




The Z-Transform
Note:
(a) Comments on system stability apply only to poles and
there is no dependence on zeros of the transform

(b) Zeros at the origin of the Z-plane produce only a time
advance or delay but they have no other effect

1
(Z2 -2rZCosO + r2)

= y[n]=2rCosOy|n-1]- rzy[n - 2]+ x[n =2]

Consider again: H(Z) =

Sothaty[0]=0and y[1] =0

We can force y[n] to start @ n=0 by using (b) above !




The Z-Transform

Simply apply the time advance operator 'Z' twice:

H'(Z) = Z2.H(Z)

' Y(Z) Z?
= H (Z) B 7) B (22 —2rZCos0 + r2)

= (2° - 2rZCos0+ r* )Y (2) = Z*X(Z)

= y|[n]=2rCosOy|n-1]- rzy[n 21+ x[n]




The Z-Transform
The Fourier Transform in the Z-Plane: Geometrical Methods

Setting Z = exp(-jQ2) we transform the Z-T into the the F-T

Where are the values of Z = exp(j<2) in the Z plane ?

Magnitude r = 1; they lie on the unit circle




The Z-Transform

Q, = 0 corresponds to the point Z = (1, jO)
on the Argand Plane.

As Q increases, one moves anticlockwise
around the unit circle;
@QL=m Z=(-1,j0)

We know from Fourier Analysis that the FT repeats with a
period of 2. The Z-Transform (Z-plane) represention shows
this automatically as any one point on the unit circle (1, Q)
can represents all frequencies Q + 2nwt, n=0, 1, 2, 3, 4,




The Z-Transform

Consider the following LTI Processor with Z-Transform;

Z-0.8

H\Z) =
( ) /Z +0.8

Setting Z = exp(j2)

exp(jQ)-0.8
exp(jRQ)+0.8

=>H(Q)=




The Z-Transform

The numerator of H(Z) is determined by the magnitude
(length) of the Zero Vector |Z,| and the denominator by
the pole length |P,|.

So the magnitude/gain of the ‘Z‘
frequency transfer function > ‘H(Q)Q oc U
@Q=Q, A

The phase shift or
phase transfer function
@ Q2 =Q,

. =110° - 35% = 75° J




The Z-Transform

By simple extension of this graphical method one can map
the frequency transfer function of a simple processor

Q Z P4 IH(Q)]
0 0.2 1.8 0.11
/2 1.28 1.28 1.00

T 1.8 0.2 9.00
25 0.2 1.8 0.11

From figure 4.6 one can see that as one travels around the
unit circle (increasing frequency Q), the gain |H(2)| goes
through a maximum when Z = exp(j€2) passes near a pole,
here e.g., @ Q = m.




The Z-Transform
More complex processor- consider again:
Z*(z -1)(Z° +1)
(Z+0.8)(Z° +1.38593Z +0.9604)( Z* - 1.64545Z +0.9025)

H(Z) =

Zeros @ Z=0 (2nd order), Z =1 and Z = 4]

Poles @ Z = -0.8 {Real, Q = 180° ()}, a pole pair close to
the unit circle @ Q = #45° (n/4) and a second pole pair
at Q = +150° (57t/6) and also close to the unit circle.

Zeros: Expect 'true nulls' in the frequency response at Q
values specifying their location, here 0 and «

Poles: Expect peaks in the frequency response (gain) at Q
values specifying their location, here n/4, 5x/6 and &




The Z-Transform

We can break more complex systems with many zeros and
poles into simpler systems as follows:

 relz@e)
e S T IGIEG)

where K is a constant
@, (Q)+2, (Q)+d, (Q)...|- |0, (Q) + @, (Q)+ D, (Q)....]

D, (Q) - Phase vector of the nt" zero of H(Z)

n

D, (Q) - Phase vector of the nt" pole of H(Z)




The Z-Transform
1st and 29 order LTI Processors

Any LTI processor H(Z) =K.

may be represented by cascading a series of 1st and 2"
order LTI processor transfer functions

1st order

2nd order

Z,, Z;, P,, P; &€ R or occur as complex conjugate pairs




The Z-Transform

1stand 2"d order LTI Processors - Frequency Selectivity

Poles placed at well defined Q values (frequencies) and
located near the unit circle will produce sharp peaks in the
frequency response of a processor. An equal number of zeros
placed at the Z-plane origin ensures that h[n] starts @ n=0

We write that a real pole for a 15t order procesor
IS located at Z = «

The complex conjugate pole pair for a 2"d order processor
are located at Z = r.exp(j0) and Z = r.exp(-j0)




The Z-Transform

Hence one can write:

Z

HI(Z)= (Z—OC)

Z2

H(2) - {Z ~rexp(jO)RZ - rexp(-jO);}

Z2
(Z2 —2rZCosb + rz)

H(Z) =




The Z-Transform
1storder  Already looked at these in detail: (see Fig 4.9)

0 <a<1= Low pass filter
-1 < a < 0 = High pass filter

__exp(jsd)
TR exp(j€) - a

Hl(Z>= , Z — exp(j?) :>H1(Q)=H1(Z)

IH,(Q)| has a maximum value (or gain) @ Q = 0

|Lexp(jo) | 1
e ‘exp(jO)—a l-a

|H,(€2)] has a minimum value (or gain) @ Q =n

'J exp(j) _ 1
e ‘exp(jn)—a l+a

G




The Z-Transform
1st order cont'd

So the closer a is to 1 (i.e., the closer the pole is to the unit
circle), the larger the maximium gain (G, ), the smaller
the minimum gain (G,,,;,) and so the narrower the bandwidth

of the filter.

In summary, as one moves the pole of a 1st order filter
closer to the unit circle:

(i) The peak gain increases
(i) The bandwidth decreases
(iii) The impulse response (1, a, o2, a3, o4,...) slows

(i) and (iii) = Narrow the bandwidth and slow the processor




_ The Z-Transform
2" order filters

Zz
(Z2 —2rZCos0 + r2)

Hz(Z) =

X

o)

The processor has complex conjugate pole pairs
@ Z=r.exp(j0) and a 2nd order zero at the origin (Z=0)

0 determines the centre frequency of the processor /signal
and 'r' determines the 'selectivity' or bandwidth




The Z-Transform
2nd order filters

Y(2) 1
Hy(Z) - X(2) ] (1—2FCOSHZ_1 + rzZ‘z)

= y|n]|=2rCos0Oy[n-1]- rzy[n -2]+ x[n]

Letting Z = exp(jQ) =
H2 (L2) =

1
(1 —2rCosOexp(-jQ) + r’exp(- jZQ))

Hence:
1

[(1 ~2rCosfCosQ + r’Cos2Q)’ +(2rCosOSinQ — rSin 29)2]

1/2




The Z-Transform

Maximum gain occurs at the centre frequency, Q2 = 6.

1

1/2

[(1 ~2rCos0+ r*Cos20)’ +(2rCosOSin 6 — r*Sin 20)2]

Let A= (1 —_2rCos’0 + r2C0s28) 1
= G

max

Let B= (2rCosHSin0 - rzSin26) \/A2 + B*

Program 11 used to study the effect of r, 6 for 2" O systems
using the expressions above - very powerful - write your own
See Figure 4.11 for typical results




The Z-Transform
Figure 4.11 examples

(a) Cascaded 1st order LPFs: r=0.9, max gain @ Q =6 = 0° (dc) !
(b) BPF centred @ Q=6=25° (~15 Samp/cyc.), r=0.99 (narrow passband)
(c) BPF with wide bandpass (r = 0.8) centred @ Q=6=110° (~3 Samp/cyc.)

(d) Cacaded 1st order HPFs: r=0.9, max gain @ Q=6=1800° (2 Samp/cyc.)

Note: When the pole 'r' value is close to '1', you should also
expect rapid variations in the phase transfer function
d,,(Q2) as Q sweeps through the design frequency '0'!

Reminder: In sampled data systems we specify 'frequency’
in samples/cycles or equivalently 'radians' or 'degrees' !




The Z-Transform
Effect of initial conditions on the Z - Transform

Useful in two cases:
(a) The system may not have settled following the
application of a prior input

(b) The input signal was applied priorton=0and it is
required to assess its subsequent effects on the output

Consider the following:
If: X[n] — X(Z)
Then: x[n - ng] — X(Z).Z™

We can in fact write: x[n - ng].u[n - ng] — X(Z).Z™"

Multiplication by u[n - ny] ensures that x[n] is zero for n<n,




The Z-Transform

Suppose that we define x,[n] as a signal identical to x[n]
but not necessarily starting @ n =20

l.e., x4n] — X[n - 1]

Then: X,(Z)= nix[n ~11.Z7" =x[-1]+ }iox[n— n.z"

n=wo n=~0o

But: E x|ln-1|z7"=Z" E x[n-1]z"

n=1
N1=00

And also: Z' Y x[n-1]Z""" =Z" E n|z "

n= 1r
n=0o

SoX,z) =X[-11+Z73 » x|n >=x[—1]+Z‘ X(2)




The Z-Transform

Similarly it can be shown that:

If: X,[n] = x[n - 2]

Then: X,(2) - x[-2]+ x[-11Z" + Z°X(Z)
Example - Consider: yln]=a.y[n —1] + x[n]
We can rewrite as: y[n]-oa.y[n -1]= x[n]

Taking ZTs: V(2)-a{yl-1+ 2" ¥(2)} = X(2)

=Y(Z\1-az"} = X(Z) +ayl-1]

X(Z)+ o y[-1]
(1 — oc.Z‘l)




The Z-Transform
Case in point:

yl-11=- x[n]=06[n] | = X(Z)=1

1
a

We have that: X(7Z v[=1
=Y (Z) = ((1 )_-;azﬁ[) ]

l.e.,y[n] =0foralln>01
What has happened to the signal ? - we had a system with
impulse response h[n] =1, o, a?, o3, o,




The Z-Transform

Impulse response: 1, a, o> y[n]=-1/a, a=0.5

Sample Index (n) Sample Index (n)

So simply having an initial (prior) condition like y[n]=-1/a, the
Impulse response can be set to zero ! The initial (prior)

state of the system exactly cancels the impulse response

so that the filter output power becomes identically zero !!




The Z-Transform

So importantly, h[n] is the impulse response of a processor
only if all initial conditions are zero !

l.e., H(Z) = Y(Z)/X(Z) ONLY under zero initial conditions

Problem (for you):

Using yln]—oa.y[n —1]= x[n] compute h[n] for x[n] =
o[n] =1 and y[-1] = 1/a




The Z-Transform

From the above block diagram we have that:
y[n] =-0.2y[n-1] + 0.48y[n-2] + x[n]




The Z-Transform

Find y[n] when x[n] = d[n] for
(i) Zero initial conditions
(i) y[-1] = -1.25 and y[-2] = -0.52083

Taking ZTs of both sides we get for non-zero initial conditions:

Y(Z) X(Z) -02y[-1]+0.48y[-2]+ 0.48)/[—1]2‘1

1+02Z2'-0487°

Case (i): Zero initial conditions

X[n] = 8[n], = X(Z) = 1 and y[n] = h[n] = O, for all y[n] (n<0).

2Y(Z)— ! = 4
- (1 +0277' - 0.482-2) - (22 +027 - 0.48)




The Z-Transform

Y(Z) A AZ BZ
T (Z408)(2-06) (Z2+08)  (Z-056)

Multiply both sides by (Z + 0.8)(Z - 0.6). Values of A& B
must be true for all Z. Try poles of Y(Z), i.e., Z=-0.8 & 0.6.

= 7> =AZ(Z-0.6)+ BZ(Z+0.8)
Z=0.86, — B(0.6)(1.4) = 0.36, — B =0.4286
Z=-08, =A(-0.8)(-14)=048, =A=05714

vz O5TI4Z 042867
Hence " (2+08) (Z-0.6)
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Using table 4.1 on Inverse Z-Transforms we have that:

>a".uln
Ty [ n]

= y[n]=0.5714(-0.8)"u[n] + 0.4286(0.6)" u[ n]

See figure 4.13(b)




The Z-Transform

(i) Non-zero initial conditions: y[-1] = -1.25 & y[-2] = -0.52083
X(Z)-02y[-1]+0.48y[-2]+ 048 y[-1]Z"
1+02727'-048Z"

X(Z)-0.2[-1.25]+0.48[-0.52083] + 0.48[-1.25]Z"'
(1+0.8Z7")(1-0.62")

Y(Z) - X(Z2)+025-025-0.6Z"
~ (1+08z7)(1-0.62")

1 Z

= ¥(2)= (1+0.82) Z+08

= y[n]=(-0.8)"uln]

See figure 4.13(c) <




