## PS403 - Digital Signal processing

IV. DSP - The Z-Transform

Key Text:
Digital Signal Processing with Computer Applications (2 ${ }^{\text {nd }}$ Ed.)
Paul A Lynn and Wolfgang Fuerst, (Publisher: John Wiley \& Sons, UK)

We will cover in this section
How to compute the Z-Transform of a signal/ impulse response
Poles and zeros of the Z-Transform of a signal or LTI processor
Frequency analysis using the Z-Transform

## The Z-Transform

Definition: $X(Z)=\sum_{n=0}^{\infty} x[n] Z^{-n}$
Origins:
The Z-Transform is useful for looking at signals and systems in the frequency domain. It is not unlike the Laplace/Fourier Transforms except that it has its origins in sampled data systems, while Laplace/ Fourier Transforms apply to analog (continuous valued) signals and systems.
$X(Z)$ is NOT concerned with $x[n]$ prior to $n=0$; Unilateral $\sum_{n=0}^{n=\infty}$
$X(Z)$ is effectively a power series in $Z^{-1}$, with coefficients given by the values of $\mathrm{x}[\mathrm{n}]$.

## The Z-Transform

Example: Find the Z-T of $x[n]=0.8^{0}, 0.8^{1}, 0.8^{2} .0 .8^{3}, \ldots$.


$$
\begin{aligned}
X(z) \quad & =1 x Z^{0}+0.8 x Z^{-1}+0.64 x Z^{-2}+0.512 x Z^{-3}+\ldots \ldots \\
& =1+\left(0.8 x Z^{-1}\right)^{1}+\left(0.8 x Z^{-1}\right)^{2}+\left(0.8 x Z^{-1}\right)^{3}+\ldots
\end{aligned}
$$

$$
\Rightarrow X(Z)=\frac{1}{1-0.8 Z^{-1}}=\frac{Z}{Z-0.8}
$$

## The Z-Transform

Example: Find the signal $x[\mathrm{n}]$ with $Z$-Transform: $X(Z)=\frac{1}{Z+1.2}$

$$
\begin{gathered}
X(Z)=\frac{1}{Z+1.2}=\frac{Z^{-1}}{1+1 \cdot 2 \cdot Z^{1}} \\
=Z^{-1}\left(1+1.2 Z^{-1}\right)^{-1} \\
=Z^{-1}\left[1+\left(-1.2 Z^{-1}\right)^{1}+\left(-1.2 Z^{-1}\right)^{2}+\left(-1.2 Z^{-1}\right)^{3}+. .\right]
\end{gathered}
$$

$$
=1 Z^{-1}-1.2 Z^{-2}+1.44 Z^{-3}+\ldots
$$

> By inspection: $x[0]=0$ $x[1]=1$ $x[2]=-1.2$ $x[3]=1.44$ $x[n]=(-1.2)^{n-1}$

## The Z-Transform

1. Notice that although both signals theoretically contain an infinite number of sample values, their Z-Ts are very compact
2. One can think of the of $Z$ as a time-shift operator Multiplication by $Z \equiv$ time advance by one sampling interval Division by $Z \equiv$ time delay by one sampling interval

Example: Time shifting a unit impulse
The Z-T of a unit impulse is given by:

$$
X(Z)=\sum_{n=0}^{\infty} \delta[n] Z^{-n}=\left.Z^{-n}\right|_{n=0}=1
$$

## The Z-Transform

The Z-T of a unit impulse delayed by $\mathrm{n}_{0}$ sampling intervals is:

$$
X(Z)=\sum_{n=0}^{\infty} \delta\left[n-n_{0}\right] Z^{-n}=\left.Z^{-n}\right|_{n=n_{0}}=Z^{-n_{0}}
$$

Hence time shifting in Z-space becomes a simple operation multiplication by $Z^{n_{0}}$ for time delay or $Z^{+n_{0}}$ for time advance

As the Z-T \& F-T are related, the convolution theorem applies !

$$
\begin{aligned}
& X(Z)=\sum_{n=0}^{\infty} x[n] Z^{-n}, \text { let } Z=\exp (j \Omega) \\
& \Rightarrow X(\Omega)=\sum_{n=0}^{n=\infty} x[n] \exp (-j n \Omega)
\end{aligned}
$$

## The Z-Transform

If $\mathrm{x}[\mathrm{n}]$ is an input signal and $\mathrm{h}[\mathrm{n}]$ a processor response; we know that:
$y[n]=x[n]^{*} h[n]$
and hence

$$
\begin{gathered}
Y(\Omega)=X(\Omega) \cdot H(\Omega) \\
\text { and } \\
Y(Z)=X(Z) \cdot H(Z)
\end{gathered}
$$

Convolution Theorem applies to Z-Ts

## The Z-Transform

Convolution Theorem - proof by example Direct convolution: $y[n]=h[n]^{*} x[n]$

| $\mathbf{n}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathbf{x [ n ]}$ | 1 | -2 | 3 | -1 | -1 | 0 | 0 | 0 | 0 |
| $\mathbf{h}[\mathbf{n}]$ | 2 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\mathbf{y}[\mathbf{n}]$ | 2 | -3 | 3 | 3 | -6 | 0 | 1 | 0 | 0 |

Z-T Multiplication: $Y(Z)=H(Z) \cdot X(Z)$

$$
\begin{array}{|l}
X(Z)=\sum_{n=0}^{\infty} x[n] Z^{-n} \begin{aligned}
& X(Z)=1-2 Z^{-1}+3 Z^{-2}-Z^{-3}-Z^{-4} \ldots \ldots . \\
& H(Z)=2+Z^{-1}-Z^{-2}
\end{aligned} \\
Y(Z)=H(Z) \cdot X(Z)=2-3 Z^{-1}+3 Z^{-2}+3 Z^{-3}-6 Z^{-4}+0 Z^{-5}+Z^{-6}=\sum_{n=0}^{\infty} y[n] Z^{-n}
\end{array}
$$

By inspection: $y[n]=2,-3,3,3,-6,0,1,0,0, \ldots \ldots$.

## The Z-Transform

A processor has an impulse response in Z-space given by:

$$
H(Z)=\frac{1}{Z(Z-1)(2 Z-1)}
$$

Find the (i) corresponding difference equation describing the action of the processor and (ii) its impulse response.
(i) find $y[n]$

$$
\begin{aligned}
& H(Z)=\frac{1}{Z(Z-1)(2 Z-1)}=\frac{Y(Z)}{X(Z)} \\
& \Rightarrow Y(Z)[Z(Z-1)(2 Z-1)]=X(Z) \\
& 2 Z^{3} Y(Z)-3 Z^{2} Y(Z)+Z Y(Z)=Y(Z)
\end{aligned}
$$

## The Z-Transform

Since multiplication by $Z$ is $\equiv$ time advance by one sampling interval we can write:

$$
2 y[n+3]-3 y[n+2]+y[n+1]=x[n]
$$

Since this is a simple recurrence formula we can let $\mathrm{n} \rightarrow \mathrm{n}-3$ without any loss of generalisation

$$
\begin{gathered}
\Rightarrow 2 y[n]-3 y[n-1]+y[n-2]=x[n-3] \\
\text { or }
\end{gathered}
$$

$$
y[n]=1.5 y[n-1]-0.5 y[n-2]+0.5 x[n-3]
$$

Show that $\mathrm{h}[\mathrm{n}]=0,0,0,0.5,0.75,0.875, \ldots$.

## The Z-Transform

We can now study more complex processors, e.g.,

$$
\begin{aligned}
& H(Z)=\frac{Z^{2}(Z-1)\left(Z^{2}+1\right)}{(Z+0.8)\left(Z^{2}+1.38593 Z+0.9604\right)\left(Z^{2}-1.64545 Z+0.9025\right)}=\frac{Y(Z)}{X(Z)} \\
& {\left[Z^{5}-Z^{4}+Z^{3}-Z^{2}\right] \cdot X(Z)=\left[Z^{5}+0.54048 Z^{4}-0.62519 Z^{3}-\right.} \\
& \left.0.66354 Z^{2}+0.60317 Z+0.69341\right] . Y(Z)
\end{aligned}
$$

$$
x[n+5]-x[n+4]+x[n+3]-x[n+2]=
$$

$$
y[n+5]+0.54048 y[n+4]-0.62519 y[n+3]-0.66354 y[n+2]
$$

$$
+0.60317 y[n+1]+0.69341 y[n]
$$

Since we can let $n \rightarrow n-5$ without any loss of generalisation

$$
\begin{gathered}
y[n]=-0.54048 y[n-1]+0.62519 y[n-2]+0.66354 y[n-3]- \\
0.60317 y[n-4]-0.69341 y[n-5]+x[n]-x[n-1]+x[n-2]-x[n-3]
\end{gathered}
$$

## The Z-Transform

Steady State Response of a Processor - Final Value Theorem Step Response $\mathrm{S}[\mathrm{n}]$ as ' n ' gets very large!

$$
\begin{aligned}
& \text { If } x[n] \frac{Z-\text { Transform }}{\rightarrow} X(Z) \\
\Rightarrow & \frac{\operatorname{Lim}}{n \rightarrow \infty} x[n]=\frac{\operatorname{Lim}}{Z \rightarrow 1}\left(\frac{Z-1}{Z}\right) X(Z)
\end{aligned}
$$

Note that the Z-T of a unit step $\mathbf{u}[\mathbf{n}]=\frac{Z}{Z-1}$
Hence if $u[n]$ is an input signal to a system with transfer function $H(Z)$, then the output signal is given by:

$$
Y(Z)=\left(\frac{Z}{Z-1}\right) H(Z)
$$

## The Z-Transform

Final Value Theorem

$$
\begin{aligned}
& \Rightarrow \frac{\operatorname{Lim}}{n \rightarrow \infty} \mathrm{~S}[\mathrm{n}]=\frac{\operatorname{Lim}}{Z \rightarrow 1}\left(\frac{Z-1}{Z}\right) Y(Z) \\
& =\frac{\operatorname{Lim}}{Z \rightarrow 1}\left(\frac{Z-1}{Z}\right)\left(\frac{Z}{Z-1}\right) H(Z)=\frac{\operatorname{Lim}}{Z \rightarrow 1} H(Z)
\end{aligned}
$$

Finally the Final Value Theorem States that:

$$
\frac{\operatorname{Lim}}{n \rightarrow \infty} \mathrm{~S}[\mathrm{n}]=\frac{\operatorname{Lim}}{Z \rightarrow 1} H(Z)
$$

## The Z-Transform

Final Value Theorem: Example

Consider $\quad \mathrm{y}[\mathrm{n}]=0.8 \mathrm{y}[\mathrm{n}-1]+\mathrm{x}[\mathrm{n}]$
Then

$$
h[n]=0.8 h[n-1]+\delta[n]
$$

$$
H(Z)=\frac{Z}{Z-0.8}
$$

Ergo

$$
\frac{\operatorname{Lim}}{n \rightarrow \infty} \mathrm{~S}[\mathrm{n}]=\frac{\operatorname{Lim}}{Z \rightarrow 1} H(Z)=\frac{1}{1-0.8}=5
$$

Look back at step response of this processor in section 3

## The Z-Transform

Frequency Analysis using Z-Transforms

$$
X(Z)=\sum_{n=0}^{n=\infty} x[n] \cdot Z^{-n}
$$

Substituting $Z=\exp (j \Omega)$

$$
\Rightarrow X(\Omega)=\sum_{n=0}^{n=\infty} x[n] \exp (-j n \Omega)
$$

The Z-Transform is most useful not just for compact description of LTI processors with long/infinite impulse reponse but also for inferring their frequency response

## The Z-Transform

Poles and zeros of $X(Z)$ :
$X(Z)$ is always a rational function, i.e., it can always be written as a ratio of two polynomials in $Z$.

Hence on can write:

$$
X(Z)=\frac{N(Z)}{D(Z)}=K \cdot \frac{\left(Z-Z_{1}\right) \cdot\left(Z-Z_{2}\right) \cdot\left(Z-Z_{3}\right) \ldots \ldots \ldots}{\left(Z-P_{1}\right) \cdot\left(Z-P_{2}\right) \cdot\left(Z-P_{3}\right) \cdot \ldots \ldots \ldots}
$$

Where $\quad Z_{1}, Z_{2}, \ldots . . \quad$ are the Zeros of $X(Z)$
and $\quad P_{1}, P_{2}, \ldots . . \quad$ are the Poles of $X(Z)$
If $x[n] \in R \Rightarrow$ Poles \& Zeros are either real or occur in complex conjugate pairs

## The Z-Transform

Z-Plane and the Argand Diagram:
It is often useful to plot the poles and zeros of a Z-T on an Argand diagram. In fact, a trained eye will deduce the salient features of a processor response from the plot quite easily !

## Convention

## Zeros are plotted as $\bigcirc$ symbols <br> Poles are plotted as X symbols

Example: Plot the poles and zeros of the following ZT :

$$
X(Z)=\frac{Z^{2}(Z-1.2)(Z+1)}{(Z-0.5+j 0.7)(Z-0.5-j 0.7)(Z-0.8)}
$$

## The Z-Transform

Example: Poles and zeros


By inspection we have:
Zeros @ Z= 0 (2 of), $Z=1.2 \& Z=-1.0 \&$
Poles @ Z=0.8, Z = 0.5-j0.7 \& Z = 0.5+j0.7

## The Z-Transform

Inferring LTI System Stability from Pole-Zero Plots
Consider a digital LTI processor with ZT: $H(Z)=\frac{Y(Z)}{X(Z)}$

Clear that $\mathrm{Y}(\mathrm{Z})$ \{and concomitantly the processor output $y[n]\}$ determines the location of all zeros of the ZT and that $\mathrm{X}(\mathrm{Z})$ and $\{$ hence $\mathrm{x}[\mathrm{n}]\}$ determines the locations of the poles.

$$
\text { Say that } H(Z)=\frac{Y(Z)}{X(Z)}=\frac{1}{Z-\alpha}
$$

System has no zeros and one pole at $Z=\alpha$

$$
\begin{aligned}
& Z Y(Z)-\alpha Y(Z)=X(Z) \\
\Rightarrow & y[n+1]-\alpha y[n]=x[n] \\
\Rightarrow & y[n]=\alpha y[n-1]+x[n-1]
\end{aligned}
$$

Find $\mathrm{h}[\mathrm{n}]$ !

## The Z-Transform

$$
\begin{aligned}
& H(Z)=\frac{Y(Z)}{X(Z)}=\frac{1}{Z-\alpha} \\
& \Rightarrow \mathrm{h}[\mathrm{n}]=\alpha \mathrm{h}[\mathrm{n}-1]+\delta[\mathrm{n}-1] \\
& \Rightarrow \quad \mathrm{h}[\mathrm{n}]=0,1, \alpha, \alpha^{2}, \alpha^{3}, \alpha^{4}, \ldots .
\end{aligned}
$$

Hence, if $\alpha<1, \mathrm{~h}[\mathrm{n}]$ may be infinite but at least it is bounded which implies $H(Z)$ describes a stable system.

If $\alpha>1, h[n]$ grows without limit, $\Rightarrow H(Z)=$ unstable system.
Conclusion: A system is stable only if the poles (i.e., all poles) lie within the unit circle !

Clearly the same is true of signals: one or more poles outside the unit circle $\Rightarrow$ unbounded signal

## The Z-Transform

Pole locations in Polar Coordinates


Two poles lying on a circle of radius ' $r$ ' making and angle $\theta$ w.r.t the $\operatorname{Re}(a l)$ axis $\Rightarrow$ So pole locations are r. $[\exp (\mathrm{j} \theta)]$ and r. $[\exp (-j \theta)]$

$$
\text { So } \begin{aligned}
H(Z)=\frac{Y(Z)}{X(Z)} & =\frac{1}{[Z-r \cdot \exp (j \theta)][Z-r \cdot \exp (-j \theta)]} \\
& =\frac{1}{\left(Z^{2}-2 r Z \operatorname{Cos} \theta+r^{2}\right)}
\end{aligned}
$$

## The Z-Transform

Pole locations in Polar Coordinates

$$
\begin{aligned}
& \Rightarrow Y(Z) \cdot\left(Z^{2}-2 r Z \operatorname{Cos} \theta+r^{2}\right)=X(Z) \\
& \Rightarrow y[n]=2 r \operatorname{Cos} \theta y[n-1]-r^{2} y[n-2]+x[n-2]
\end{aligned}
$$

For a bounded (finite) output, $\mathrm{r}<1 \Rightarrow$ system is stable Example Application - See figure 4.2 and equation 4.14

$$
H(Z)=\frac{Z^{2}(Z-1)\left(Z^{2}+1\right)}{(Z+0.8)\left(Z^{2}+1.38593 Z+0.9604\right)\left(Z^{2}-1.64545 Z+0.9025\right)}
$$

Two Re Zeros @ Z=0
One Re Pole @ Z=-0.8
One Re Zero @ Z=1
Two Im Zeros @ Z=さj

## The Z-Transform

Pole locations in Polar Coordinates
Now compare;

$$
\begin{gathered}
\frac{1}{\left(Z^{2}-2 r Z \operatorname{Cos} \theta+r^{2}\right)} \quad \text { with } \frac{1}{\left(Z^{2}+1.38593 Z+0.9604\right)} \\
\begin{array}{c}
r^{2}=0.9604 \text { and } 2 r \operatorname{Cos} \theta=-1.38593 \\
\Rightarrow \quad r=0.98 \text { and } \theta=45^{\circ}
\end{array} \\
\frac{1}{\left(Z^{2}-1.64545 Z+0.9025\right)} \quad \text { yields } r=0.95 \text { and } \theta=150^{\circ}
\end{gathered}
$$

Hence the system is stable because ALL $r<1$ !

## The Z-Transform

Note:
(a) Comments on system stability apply only to poles and there is no dependence on zeros of the transform
(b) Zeros at the origin of the Z-plane produce only a time advance or delay but they have no other effect

Consider again: $\quad H(Z)=\frac{1}{\left(Z^{2}-2 r Z \operatorname{Cos} \theta+r^{2}\right)}$

$$
\Rightarrow y[n]=2 r \operatorname{Cos} \theta y[n-1]-r^{2} y[n-2]+x[n-2]
$$

So that $\mathrm{y}[0]=0$ and $\mathrm{y}[1]=0$
We can force $y[n]$ to start @ n=0 by using (b) above !

## The Z-Transform

Simply apply the time advance operator ' $Z$ ' twice:

$$
H^{\prime}(Z)=Z^{2} \cdot H(Z)
$$

$$
\Rightarrow H^{\prime}(Z)=\frac{Y(Z)}{X(Z)}=\frac{Z^{2}}{\left(Z^{2}-2 r Z \operatorname{Cos} \theta+r^{2}\right)}
$$

$$
\Rightarrow\left(Z^{2}-2 r Z \operatorname{Cos} \theta+r^{2}\right) Y(Z)=Z^{2} X(Z)
$$

$$
\Rightarrow y[n]=2 r \operatorname{Cos} \theta y[n-1]-r^{2} y[n-2]+x[n]
$$

## The Z-Transform

The Fourier Transform in the Z-Plane: Geometrical Methods Setting $Z=\exp (-j \Omega)$ we transform the $Z-T$ into the the $\mathrm{F}-\mathrm{T}$

Where are the values of $Z=\exp (j \Omega)$ in the $Z$ plane ?
Magnitude $r=1$; they lie on the unit circle


## The Z-Transform

$\Omega_{1}=0$ corresponds to the point $Z=(1, j 0)$ on the Argand Plane.

As $\Omega$ increases, one moves anticlockwise around the unit circle;

$$
@ \Omega=\pi, Z=(-1, j 0)
$$

We know from Fourier Analysis that the FT repeats with a period of $2 \pi$. The Z-Transform (Z-plane) represention shows this automatically as any one point on the unit circle $(1, \Omega)$ can represents all frequencies $\Omega+2 n \pi, n=0,1,2,3,4, \ldots \ldots$.

## The Z-Transform

Consider the following LTI Processor with Z-Transform;

$$
H(Z)=\frac{Z-0.8}{Z+0.8}
$$

Setting $Z=\exp (j \Omega)$
$\Rightarrow H(\Omega)=\frac{\exp (j \Omega)-0.8}{\exp (j \Omega)+0.8}$


## The Z-Transform

The numerator of $\mathrm{H}(\mathrm{Z})$ is determined by the magnitude (length) of the Zero Vector $\left|Z_{1}\right|$ and the denominator by the pole length $\left|P_{1}\right|$.

So the magnitude/gain of the frequency transfer function @ $\Omega=\Omega_{1}$

$$
|H(\Omega)|_{\Omega_{1}} \propto \frac{\left|Z_{1}\right|}{\left|P_{1}\right|}
$$

The phase shift or phase transfer function @ $\Omega=\Omega_{1}$


## The Z-Transform

By simple extension of this graphical method one can map the frequency transfer function of a simple processor

| $\boldsymbol{\Omega}$ | $\mathbf{Z}_{\mathbf{1}}$ | $\mathbf{P}_{\mathbf{1}}$ | $\mathbf{\| H}(\boldsymbol{\Omega}) \boldsymbol{\|}$ |
| ---: | ---: | ---: | ---: |
| $\mathbf{0}$ | 0.2 | 1.8 | 0.11 |
| $\boldsymbol{\pi} \mathbf{2}$ | 1.28 | 1.28 | 1.00 |
| $\boldsymbol{\pi}$ | 1.8 | 0.2 | 9.00 |
| $\mathbf{2} \boldsymbol{\pi}$ | 0.2 | 1.8 | 0.11 |

From figure 4.6 one can see that as one travels around the unit circle (increasing frequency $\Omega$ ), the gain $|\mathrm{H}(\Omega)|$ goes through a maximum when $Z=\exp (j \Omega)$ passes near a pole, here e.g., @ $\Omega=\pi$.

## The Z-Transform

More complex processor- consider again:

$$
H(Z)=\frac{Z^{2}(Z-1)\left(Z^{2}+1\right)}{(Z+0.8)\left(Z^{2}+1.38593 Z+0.9604\right)\left(Z^{2}-1.64545 Z+0.9025\right)}
$$

Zeros @ Z=0 (2nd order), $Z=1$ and $Z= \pm j$
Poles @ Z = $-0.8\left\{\right.$ Real, $\left.\Omega=180^{\circ}(\pi)\right\}$, a pole pair close to the unit circle @ $\Omega= \pm 45^{\circ}(\pi / 4)$ and a second pole pair at $\Omega= \pm 150^{\circ}(5 \pi / 6)$ and also close to the unit circle.

Zeros: Expect 'true nulls' in the frequency response at $\Omega$ values specifying their location, here 0 and $\pi$

Poles: Expect peaks in the frequency response (gain) at $\Omega$ values specifying their location, here $\pi / 4,5 \pi / 6$ and $\pi$

## The Z-Transform

We can break more complex systems with many zeros and poles into simpler systems as follows:

$$
|H(\Omega)|=K \frac{\left|Z_{1}(\Omega)\right|\left|Z_{2}(\Omega)\right| \cdot\left|Z_{3}(\Omega)\right| \ldots \ldots \ldots}{\left|P_{1}(\Omega)\right||\cdot| P_{2}(\Omega)| | P_{3}(\Omega) \mid \ldots \ldots .}
$$

where K is a constant
$\Phi_{H}(\Omega)=\left[\Phi_{Z_{1}}(\Omega)+\Phi_{Z_{2}}(\Omega)+\Phi_{Z_{3}}(\Omega) \ldots ..\right]-\left[\Phi_{P_{1}}(\Omega)+\Phi_{P_{2}}(\Omega)+\Phi_{P_{3}}(\Omega) \ldots ..\right]$
$\Phi_{Z_{n}}(\Omega)$ - Phase vector of the $\mathrm{n}^{\text {th }}$ zero of $\mathrm{H}(\mathrm{Z})$
$\Phi_{P_{n}}(\Omega)$ - Phase vector of the $\mathrm{n}^{\text {th }}$ pole of $\mathrm{H}(\mathrm{Z})$

## The Z-Transform

$1^{\text {st }}$ and $2^{\text {nd }}$ order LTI Processors
Any LTI processor $H(Z)=K \cdot \frac{\left(Z-Z_{1}\right)\left(Z-Z_{2}\right)\left(Z-Z_{3}\right) \ldots \ldots \ldots . .}{\left(Z-P_{1}\right)\left(Z-P_{2}\right)\left(Z-P_{3}\right) \ldots . . . . . .}$
may be represented by cascading a series of $1^{\text {st }}$ and $2^{\text {nd }}$ order LTI processor transfer functions
$1^{\text {st }}$ order $\quad H_{1}(Z)=\frac{\left(Z-Z_{1}\right)}{\left(Z-P_{1}\right)} \quad Z_{1}$ and $P_{1} \in \mathrm{R}$
$2^{\text {nd }}$ order $\quad H_{2}(Z)=\frac{\left(Z-Z_{2}\right)\left(Z-Z_{3}\right)}{\left(Z-P_{2}\right)\left(Z-P_{3}\right)}$
$Z_{2}, Z_{3}, P_{2}, P_{3} \in R$ or occur as complex conjugate pairs

## The Z-Transform

$1^{\text {st }}$ and $2^{\text {nd }}$ order LTI Processors - Frequency Selectivity
Poles placed at well defined $\Omega$ values (frequencies) and located near the unit circle will produce sharp peaks in the frequency response of a processor. An equal number of zeros placed at the Z-plane origin ensures that h[n] starts @ n=0

We write that a real pole for a $1^{\text {st }}$ order procesor is located at $Z=\alpha$

The complex conjugate pole pair for a $2^{\text {nd }}$ order processor are located at $Z=r . \exp (j \theta)$ and $Z=r . \exp (-j \theta)$

## The Z-Transform

Hence one can write:

$$
\begin{gathered}
H_{1}(Z)=\frac{Z}{(Z-\alpha)} \\
H_{2}(Z)=\frac{Z^{2}}{\{Z-r \cdot \exp (j \theta)\}\{Z-r \cdot \exp (-j \theta)\}} \\
H(Z)=\frac{Z^{2}}{\left(Z^{2}-2 r Z \operatorname{Cos} \theta+r^{2}\right)}
\end{gathered}
$$

## The Z-Transform

$1^{\text {st }}$ order $\quad$ Already looked at these in detail: (see Fig 4.9)
$0<\alpha<1 \Rightarrow$ Low pass filter
$-1<\alpha<0 \Rightarrow$ High pass filter
$H_{1}(Z)=\frac{Z}{(Z-\alpha)}, Z \rightarrow \exp (j \Omega) \Rightarrow H_{1}(\Omega)=\left.H_{1}(Z)\right|_{Z=\exp (j \Omega)}=\frac{\exp (j \Omega)}{\exp (j \Omega)-\alpha}$
$\left|\mathrm{H}_{1}(\Omega)\right|$ has a maximum value (or gain) @ $\Omega=0$

$$
G_{\max }=\left|\frac{\exp (j 0)}{\exp (j 0)-\alpha}\right|=\frac{1}{1-\alpha}
$$

$\left|\mathrm{H}_{1}(\Omega)\right|$ has a minimum value (or gain) @ $\Omega=\pi$

$$
G_{\min }=\left|\frac{\exp (j \pi)}{\mid \exp (j \pi)-\alpha}\right|=\frac{1}{1+\alpha}
$$

## The Z-Transform

## $1^{\text {st }}$ order cont'd

So the closer $\alpha$ is to 1 (i.e., the closer the pole is to the unit circle), the larger the maximium gain ( $\mathrm{G}_{\text {max }}$ ), the smaller the minimum gain $\left(\mathrm{G}_{\mathrm{min}}\right)$ and so the narrower the bandwidth of the filter.

In summary, as one moves the pole of a 1st order filter closer to the unit circle:
(i) The peak gain increases
(ii) The bandwidth decreases
(iii) The impulse response (1, $\left.\alpha, \alpha^{2}, \alpha^{3}, \alpha^{4}, \ldots\right)$ slows
(ii) and (iii) $\Rightarrow$ Narrow the bandwidth and slow the processor

## The Z-Transform

## $2^{\text {nd }}$ order filters

$$
H_{2}(Z)=\frac{Z^{2}}{\left(Z^{2}-2 r Z \operatorname{Cos} \theta+r^{2}\right)}
$$



The processor has complex conjugate pole pairs
@ Z=r.exp(j $\theta$ ) and a 2nd order zero at the origin (Z=0)
$\theta$ determines the centre frequency of the processor /signal and 'r' determines the 'selectivity' or bandwidth

## The Z-Transform

## $2^{\text {nd }}$ order filters

$$
\begin{gathered}
H_{2}(Z)=\frac{Y(Z)}{X(Z)}=\frac{1}{\left(1-2 r \operatorname{Cos} \theta Z^{-1}+r^{2} Z^{-2}\right)} \\
\Rightarrow y[n]=2 r \operatorname{Cos} \theta y[n-1]-r^{2} y[n-2]+x[n]
\end{gathered}
$$

Letting $Z=\exp (j \Omega) \Rightarrow$

$$
H_{2}(\Omega)=\frac{1}{\left(1-2 r \operatorname{Cos} \theta \exp (-j \Omega)+r^{2} \exp (-j 2 \Omega)\right)}
$$

Hence:

$$
\left|H_{2}(\Omega)\right|=\frac{1}{\left[\left(1-2 r \operatorname{Cos} \theta \operatorname{Cos} \Omega+r^{2} \operatorname{Cos} 2 \Omega\right)^{2}+\left(2 r \operatorname{Cos} \theta \operatorname{Sin} \Omega-r^{2} \operatorname{Sin} 2 \Omega\right)^{2}\right]^{1 / 2}}
$$

## The Z-Transform

Maximum gain occurs at the centre frequency, $\Omega=\theta$.

$$
\left|H_{2}(\theta)\right|=G_{\max }=\frac{1}{\left[\left(1-2 r \operatorname{Cos}^{2} \theta+r^{2} \operatorname{Cos} 2 \theta\right)^{2}+\left(2 r \operatorname{Cos} \theta \operatorname{Sin} \theta-r^{2} \operatorname{Sin} 2 \theta\right)^{2}\right]^{1 / 2}}
$$

Let $\mathrm{A}=\left(1-2 r \operatorname{Cos}^{2} \theta+r^{2} \operatorname{Cos} 2 \theta\right)$

$$
\Rightarrow G_{\max }=\frac{1}{\sqrt{A^{2}+B^{2}}}
$$

Program 11 used to study the effect of $r, \theta$ for $2^{\text {nd }} O$ systems using the expressions above - very powerful - write your own See Figure 4.11 for typical results

## The Z-Transform

## Figure 4.11 examples

(a) Cascaded 1st order LPFs: $\mathrm{r}=0.9$, max gain @ $\Omega=\theta=0^{0}$ (dc)!
(b) BPF centred @ $\Omega=\theta=25^{\circ}$ ( $\sim 15$ Samp/cyc.), r=0.99 (narrow passband)
(c) BPF with wide bandpass $(r=0.8)$ centred @ $\Omega=\theta=110^{\circ}$ ( $\sim 3$ Samp/cyc.)
(d) Cacaded 1st order HPFs: r=0.9, max gain @ $\Omega=\theta=180^{\circ}$ (2 Samp/cyc.)

Note: When the pole 'r' value is close to '1', you should also expect rapid variations in the phase transfer function $\Phi_{\mathrm{H}}(\Omega)$ as $\Omega$ sweeps through the design frequency ' $\theta$ ' !

Reminder: In sampled data systems we specify 'frequency' in samples/cycles or equivalently 'radians' or 'degrees' !

## The Z-Transform

Effect of initial conditions on the Z - Transform
Useful in two cases:
(a) The system may not have settled following the application of a prior input
(b) The input signal was applied prior to $\mathrm{n}=0$ and it is required to assess its subsequent effects on the output Consider the following:

| If: $x[n]$ | $\rightarrow$ | $X(Z)$ |
| :--- | :--- | :--- |
| Then: $x\left[n-n_{0}\right]$ | $\rightarrow$ | $X(Z) \cdot Z^{-n_{0}}$ |

We can in fact write: $x\left[n-n_{0}\right] \cdot u\left[n-n_{0}\right] \rightarrow X(Z) \cdot Z^{-n}$
Multiplication by $u\left[n-n_{0}\right]$ ensures that $x[n]$ is zero for $n<n_{0}$

## The Z-Transform

Suppose that we define $\mathrm{x}_{1}[\mathrm{n}]$ as a signal identical to $\mathrm{x}[\mathrm{n}]$ but not necessarily starting @ $\mathrm{n}=0$
i.e., $\quad x_{1}[n] \rightarrow \quad x[n-1]$

Then: $\quad X_{1}(Z)=\sum_{n=0}^{n=\infty} x[n-1] \cdot Z^{n}=x[-1]+\sum_{n=1}^{n=\infty} x[n-1] \cdot Z^{n}$
But: $\quad \sum_{n=1}^{n=\infty} x[n-1] Z^{-n}=Z^{-1} \sum_{n=1}^{n=\infty} x[n-1] Z^{-(n-1)}$
And also: $Z^{-1} \sum_{n=1}^{n=\infty} x[n-1] Z^{-(n-1)}=Z^{-1} \sum_{n=0}^{n=\infty} x[n] Z^{-(n)}$
So $\mathrm{X}_{1}(\mathrm{Z})=x[-1]+Z^{-1}\left\{\sum_{n=0}^{n=\infty} x[n] Z^{-n}\right\}=x[-1]+Z^{-1} X(Z)$

## The Z-Transform

Similarly it can be shown that:
If: $\quad x_{2}[n]=x[n-2]$
Then: $X_{2}(Z)-x[-2]+x[-1] Z^{-1}+Z^{2} X(Z)$
Example - Consider: $y[n]=\alpha \cdot y[n-1]+x[n]$
We can rewrite as: $\quad y[n]-\alpha \cdot y[n-1]=x[n]$
Taking ZTs:

$$
\begin{aligned}
& Y(Z)-\alpha\left\{y[-1]+Z^{-1} Y(Z)\right\}=X(Z) \\
\Rightarrow & Y(Z)\left\{1-\alpha \cdot Z^{-1}\right\}=X(Z)+\alpha \cdot y[-1] \\
\Rightarrow & Y(Z)=\frac{X(Z)+\alpha \cdot y[-1]}{\left(1-\alpha \cdot Z^{-1}\right)}
\end{aligned}
$$

## The Z-Transform

Case in point:

$$
y[-1]=-\frac{1}{\alpha} \quad|x[n]=\delta[n]| \Rightarrow X(Z)=1
$$

We have that:

$$
\begin{aligned}
& \Rightarrow Y(Z)=\frac{X(Z)+\alpha \cdot y[-1]}{\left(1-\alpha \cdot Z^{-1}\right)} \\
& \Rightarrow Y(Z)=\frac{X(Z)+\alpha\left(-\frac{1}{\alpha}\right)}{\left(1-\alpha Z^{-1}\right)}=0
\end{aligned}
$$

i.e., $y[n]=0$ for all $n>0$ !!

What has happened to the signal ? - we had a system with impulse response $h[n]=1, \alpha, \alpha^{2}, \alpha^{3}, \alpha^{4}, \ldots .$.

## The Z-Transform




So simply having an initial (prior) condition like $y[n]=-1 / \alpha$, the impulse response can be set to zero! The initial (prior) state of the system exactly cancels the impulse response so that the filter output power becomes identically zero !!

## The Z-Transform

So importantly, $\mathrm{h}[\mathrm{n}]$ is the impulse response of a processor only if all initial conditions are zero!
i.e., $H(Z)=Y(Z) / X(Z)$ ONLY under zero initial conditions

Problem (for you):
Using $y[n]-\alpha \cdot y[n-1]=x[n]$ compute $\mathrm{h}[\mathrm{n}]$ for $\mathrm{x}[\mathrm{n}]=$ $\delta[n]=1$ and $y[-1]=1 / \alpha$

## The Z-Transform

## Example



From the above block diagram we have that:

$$
y[n]=-0.2 y[n-1]+0.48 y[n-2]+x[n]
$$

## The Z-Transform

Find $y[n]$ when $x[n]=\delta[n]$ for
(i) Zero initial conditions
(ii) $\mathrm{y}[-1]=-1.25$ and $\mathrm{y}[-2]=-0.52083$

Taking ZTs of both sides we get for non-zero initial conditions:

$$
Y(Z)=\frac{X(Z)-0.2 y[-1]+0.48 y[-2]+0.48 y[-1] Z^{-1}}{1+0.2 Z^{-1}-0.48 Z^{-2}}
$$

Case (i): Zero initial conditions

$$
\begin{aligned}
& \mathrm{x}[\mathrm{n}]=\delta[\mathrm{n}], \Rightarrow \mathrm{X}(\mathrm{Z})=1 \text { and } \mathrm{y}[\mathrm{n}]=\mathrm{h}[\mathrm{n}]=0, \text { for all } \mathrm{y}[\mathrm{n}](\mathrm{n}<0) . \\
& \quad \Rightarrow Y(Z)=\frac{1}{\left(1+0.2 Z^{-1}-0.48 Z^{-2}\right)}=\frac{Z^{2}}{\left(Z^{2}+0.2 Z-0.48\right)}
\end{aligned}
$$

## The Z-Transform

$$
\Rightarrow Y(Z)=\frac{Z^{2}}{(Z+0.8)(Z-0.6)}=\frac{A Z}{(Z+0.8)}+\frac{B Z}{(Z-0.6)}
$$

Multiply both sides by $(Z+0.8)(Z-0.6)$. Values of A \& B must be true for all $Z$. Try poles of $Y(Z)$, i.e., $Z=-0.8 \& 0.6$.

$$
\begin{aligned}
& \Rightarrow Z^{2}=A Z(Z-0.6)+B Z(Z+0.8) \\
& Z=0.6, \quad \Rightarrow \mathrm{~B}(0.6)(1.4)=0.36, \quad \Rightarrow \mathrm{~B}=0.4286 \\
& \mathrm{Z}=-0.8, \quad \Rightarrow \mathrm{~A}(-0.8)(-1.4)=0.48, \quad \Rightarrow \mathrm{~A}=0.5714 \\
& \text { Hence } \Rightarrow Y(Z)=\frac{0.5714 . Z}{(Z+0.8)}+\frac{0.4286 Z}{(Z-0.6)}
\end{aligned}
$$

## The Z-Transform

Using table 4.1 on Inverse Z-Transforms we have that:

$$
\begin{gathered}
\frac{Z}{Z-a} \rightarrow a^{n} . u[n] \\
\Rightarrow y[n]=0.5714 .(-0.8)^{n} u[n]+0.4286 .(0.6)^{n} u[n]
\end{gathered}
$$

See figure 4.13(b)

## The Z-Transform

(ii) Non-zero initial conditions: $\mathrm{y}[-1]=-1.25 \& y[-2]=-0.52083$

$$
\begin{gathered}
Y(Z)=\frac{X(Z)-0.2 y[-1]+0.48 y[-2]+0.48 y[-1] Z^{-1}}{1+0.2 Z^{-1}-0.48 Z^{-2}} \\
Y(Z)=\frac{X(Z)-0.2[-1.25]+0.48[-0.52083]+0.48[-1.25] Z^{-1}}{\left(1+0.8 Z^{-1}\right)\left(1-0.6 Z^{-1}\right)} \\
Y(Z)=\frac{X(Z)+0.25-0.25-0.6 Z^{-1}}{\left(1+0.8 Z^{-1}\right)\left(1-0.6 Z^{-1}\right)}
\end{gathered}
$$

$$
\Rightarrow Y(Z)=\frac{1}{\left(1+0.8 Z^{-1}\right)}=\frac{Z}{Z+0.8}
$$

See figure 4.13(c)

$$
\Rightarrow y[n]=(-0.8)^{n} u[n]
$$

