
PS403 - Digital Signal processing

III. DSP - Digital Fourier Series and Transforms

Key Text:

Digital Signal Processing with Computer Applications (2nd Ed.)
Paul A Lynn and Wolfgang Fuerst, (Publisher: John Wiley & Sons, UK)

We will cover in this section
How to compute the Fourier series for a periodic digital waveform

How to compute the Fourier transform for an aperiodic digital waveform

Deconvolution in the frequency domain

Introduction - Digital Fourier Series and Transforms
Jean Baptiste Fourier - (1768 - 1830).

Reasons to work in the Fourier domain.

1.  Sinusoidal waveforms occur frequently in nature

2.  Given the frequency spectrum of an I/P signal I(f) and the frequency
 transfer function of of an LTI processor H(f) , we can compute the
 spectrum of the processed signal by simple multiplication:

O(f) = I(f) x H(f)

3. Much of DSP design is concerned with frequency transmission

Properties of signals in the frequency domain:

1.  Signals, symmetric (centred) about time t = 0 contain only cosines

2.  Periodic and infinitely long signals (waveforms) may be synthesised
 from a superposition of harmonically related sinusoids. Hence they
 may be represented by Fourier series and exhibit line spectra

3.  Aperiodic signals (such as single isolated pulses exponential
 waveforms, etc.) contain a continuum of frequencies (continuum
 spectrum) are so are represented by the Integral Fourier Transform

Introduction - Digital Fourier Series and Transforms

Digital Fourier Series

Infinitely long, periodic waves can be represented by a superposition
of sinusoids of varying amplitude and relative phase at the fundamental
frequency and its harmonics.

The amplitudes of each component sinusoid for a sampled data
signal/waveform x[n], where x[n] contains N values, are given by:

€

ak =
1
N

x[n]exp
− j2πkn
N

$
%

&
'

n= 0

N

∑

Analysis Equation

Digital Fourier Series
x[n] may also be reconstructed from its 'Harmonic Amplitudes' (ak)
using the so-called 'Synthesis Equation'

€

x[n] =
1
N

ak exp
j2πkn
N

$

%
&

k= 0

N−1

∑

Example:
See fig 3.1. Waveform with a period of 7 samples per cycle. Equation 1
is complex and has to be split into two parts for computation:

€

ak =
1
N

x[n]Cos − j2πkn
N

$
%

&
'

k= 0

N−1

∑ + j x[n]Sin − j2πkn
N

$
%

&
'

k= 0

N −1

∑)
*
+

,
-
.

k Real Part
of ak

Imaginary
Part of ak

0 0.4 285 715 0
1 0.3 018 007 -0.1 086 581
2 0.7 864 088 0.3 847 772
3 -0.3 024 935 -0.6 687 913
4 -0.3 024 928 0.6 687 927
5 0.7 864 058 -0.3 847 782
6 0.3 018 006 0.1 086 581

x[n]; -1, -1, 1, 2, 1, -2, 3, -1, -1, 1, 2, 1, -2,.......

One cycle (7 samples)

Digital Fourier Series

€

Im(ak) =
1
7

x[n]Sin −2πkn
N

$
%

&
'

n= 0

6

∑

€

Re(ak) =
1
7

x[n]Cos −2πkn
N

$
%

&
'

n= 0

6

∑

Digital Fourier Series
DIM X(100), AKR (100), AKI (100)
OPEN "Xn.dat" FOR INPUT AS #1
OPEN "Ak.dat" FOR OUTPUT AS #2
PRINT #2, "K", TAB(20);"Re (ak)";TAB(40); "Im(ak)"
FOR i = 0 TO 6
INPUT #1, X(i)
NEXT I
FOR k = 0 to 6
AKR(k) = 0.0, AKI(k) = 0.0
FOR j = 0 to 6
AKR(k) = AKR(k) + X(j)*COS((2*3.1.41.6*j*k)/7)
AKI(k) = AKI(k) + X(j)*Sin((2*3.1.41.6*j*k)/7)
NEXT j
AKR(k) = AKR(k)/7
AKI(k) = AKI(k)/7
PRINT #2, k, TAB(20); AKR(k);TAB(40); AKI(k)
NEXT k

2
1
-2
3
-1
-1
1

Input file
”Xn.dat"

Digital Fourier Series
Points to note:
1.  A sampled periodic data signal with 'N' samples/period in the 'time'

 domain will yield 'N' real and 'N' imaginary harmonic amplitudes
 (or Fourier coefficients) in the 'k' or discete frequency domain.

2.  The line spectrum will repeat itself every 'N' values, i.e., the spectrum

 itself is repetitive and periodic - but we need only the 'N' harmonic
 amplitudes to completely specify/ synthesise an 'N' valued' signal

3. Notice for a sampled data signal x[n] which is a real function of 'n',

 i.e., real valued signal, the real values of ak display mirror image
 symmmetry; a1 = 16, a2 = a5, etc. (True also for the imaginary
 coefficients but with a sign change - see Fig 3.1)

Note that as N ∞, we move towards a single, non repeating waveform,
i.e., an aperiodic signal. The harmonic amplitudes get very small (1/N) and
frequencies infinitely close - i.e., we go to a continuum of frequencies -
Discrete Fourier Transform needed to analyse/synthesise such signals.

Digital Fourier Series -
Amplitude and Phase Spectra

For a periodic signal the magnitude of each harmonic amplitude is
given by:

€

ak = Re ak()2 + Im ak()2

The corresponding phase angle for each frequency (harmonic) is
given by:

€

Φk = Tan−1 Im ak()
Re ak()
$
%
&

'
(
)

A plot of |ak| vs k yields the 'Amplitude Spectrum'

A plot of Φk vs k yields the 'Phase Spectrum'

Digital Fourier Series
Example. Consider a signal with three frequency components;

€

x[n] =1+ Sin
nπ
4

$

%
&

+ 2Cos nπ
2

$

%
&

dc cmpt
(offset)

8 samples
per cycle

4 samples
per cycle

It is clear that a full cycle of x[n] will require its evaluation over the 'n'
range, 0≤n≤7:

n 0 1 2 3 4 5 6 7
X[n] 3.000 1.707 0.000 1.707 3.000 0.293 -2.000 0.293

Digital Fourier Series
We can extract the harmonic amplitudes (ak) directly from the
Analysis Equation is we rewrite x[n] in Euler notation:

€

Sin nπ
4

$

%
&

=
1
2 j

exp
jnπ
4

$

%
&
−exp

− jnπ
4

$

%
&

(

) *
+

, -

€

Cos
nπ
2

$

%
&

=
1
2
exp

jnπ
2

$

%
&
+ exp

− jnπ
2

$

%
&

(

) *
+

, -

So we can now write x[n] as:

€

x[n] =1+
1
2 j

exp
jnπ
4

$

%
&
− exp

− jnπ
4

$

%
&

(

) *
+

, -
+
1
2
exp

jnπ
2

$

%
&

+ exp
− jnπ
2

$

%
&

(

) *
+

, -

€

x[n] =1+ Sin
nπ
4

$

%
&

+ 2Cos nπ
2

$

%
&

Digital Fourier Series
Noting that: 1/2j = -j/2 and exp(jnπ/2) = exp(2jnπ/4)

€

x[n] =1+
j
2
exp

− jnπ
4

$
%

&
'
−
j
2
exp

jnπ
4

$
%

&
'

+ exp
−2 jnπ
4

$
%

&
'

+ exp
2 jnπ
4

$
%

&
'

We can then write x[n] as:

€

x[n] = ak
k= 0

N−1

∑ exp
+ jknπ
4

%
&

'
(Comparing this with:

We see that: a0 = 1, a1 = -j/2, a2 = 1, a-1 = j/2 and a-2 = 1

x[n] has eight values but there are only five non-zero ak values ⇒
the other three values must be = 0

Also there are three real values of ak and two imaginary values of ak

Digital Fourier Series

k Re(ak) Im(ak) |ak| Φk

-2 1 0 1 0
-1 0 0.5 0.5 π/2
0 1 0 1 0
1 0 -0.5 0.5 π /2
2 1 0 1 0
3 0 0 0 0
4 0 0 0 0
5 0 0 0 0

The values can be tabulated below -

PLOT all x[n] and ak values

Notes:
If x[n] = -x[-n], i.e., x[n] is an odd function of 'n', then all Re(ak) = 0
or equivalently, odd periodic signals can be constructed from 'Sine' fns

Conversely, if x[-n] = x[n], i.e., x[n] is an even function of 'n', then all Im(ak)
= 0 and so even periodic signals can be constructed from 'Cosine' fns

Useful properties of Fourier Series
Digital Fourier Series

(a) Linearity
if x1[n] → ak and x2[n] → bk, then A.x1[n] + B.x2[n] → A.ak + B.bk

(b)  Time-Shifting
if x[n] → ak, then if x[n-n0] → ak exp[-j2πkn0/N]

Magnitude
spectrum
unchanged

But phase
spectrum
shifted by
extra factor

 Note: for n0 = N (1 Complete cycle of x[n]),
exp[-j2πkn0/N] = exp[-j2πk] = 1,

Hence the spectrum is said to be 'circular' or 'cyclic'

Digital Fourier Series

(c) Differentiation
 if x[n] → ak, then x[n] - x[n-1] → ak {1 - exp[-j2πk/N]}

1st order difference of
x[n] → differentiation

The time-shifting property gives x[n - 1] → akexp[-j2πk/N].
Then apply linearity property to get spectrum of the differentiated signal !

(d) Integration → running sum of x[n]
 if x[n] → ak, then

€

x[k]→ ak 1−exp
−2 jπk
N

%
&

'
(

)
*
+

,
-
.

−1

k=−∞

k= n

∑

Digital Fourier Series
(e) Convolution

 if x1[n] → ak and x2[n] → bk, then

€

Rx1,x 2 = x1
m=0

N−1

∑ [m].x2[n −m]→ NakbkConvolution over a
single cycle of 'N'
data points Circular Convolution

(f) Modulation Property [Inverse of convolution]
 if x1[n] → ak and x2[n] → bk, then

€

x1.x2 → am
m= 0

m=N−1

∑ bk−m

Digital Fourier Series - Progamme no. 8
Investigaton of a multifrequency signal (Fig 3.3)

Effect of 'end-to-end' vs non integral number of cycles (Fig 3.4)

Spectrum of a unit impulse (Fig 3.5). [Actually it is an impulse train and
periodic (as it has to be in order that Fourier Series can be used to
represent the signal - period is set by the 64 samples]. Assume that the
signal repeats every 64 samples. Note Φk = 0 and ak = 1/N = 1/64.

Delayed unit impulse (Fig 3.6). ak = 1/64 as before but is a Φk =
'Linear Phase Characteristic'

Equation 3.9. Parseval's Theorem applied to sampled data signals

Average Energy/Cycle
in the Time Domain

Average Energy/Cycle
in the Frequency Domain

€

1
N

x[n]()2
n= 0

n=N−1

∑ = ak()2
k= 0

k=N −1

∑

Digital Fourier Transform

In fact we are not studying the DFT. Rather it is the continuous FT of a
discrete (and finite) sampled data signal that we will deal with here !

To represent aperiodic signals and noise 'signals' we need to invoke
Fourier Transforms

APERIODIC

Not strictly repetitive

Repetitive but not strictly periodic

Cf: Appendix 2 of Paul and Fuerst for a review of
continuous time Fourier Transforms

Digital Fourier Transform
In what follows we develop the digital FT from digital FS.

Consider again the analysis (equation) form of the Fourier Series:

€

ak =
1
N

x[n].exp
− j2πkn
N

$
%

&
' n= 0

N −1

∑

Where x[n] is cyclic or periodic with period 'N' samples, e.g.,
consider the signal in Fig 3.7(a) where N = 5

Now consider what happens when adjacent cycles
are artificially separated or spaced in time - Fig 3.7 (b)

Signal is in effect 'stretched' from N=5 to N=12 samples/cycle -

But what happens in the frequency domain ?

Digital Fourier Transform

(a) Amplitudes will become smaller since ak ∝1/N

(b) Also the number of frequencies (k values) will increase, i.e., the

 frequency components labelled by 'k' will get closer to each other
 (bunch up)

In the limit as N → ∞, frequency will become a continuous variable.
i.e., we move from a line spectrum to a continuum spectrum

In the limit as N → ∞, the summation of discrete frequency which
characterises the FS will become an integral over continuous frequency

See this on next slides.......................

Digital Fourier Transform
Development of Fourier Transform from Fourier Series

The discrete frequency 2πk/N becomes Ω - continuous frequency (radians)

2πk/N → Ω	

DFS → 'DFT'

Firstly we rewrite the FS analysis equation with continuous frequency -

€

X Ω() = Nak = x[n]exp − jnΩ()
n= 0

n=∞

∑
We often make x[n] symmetric about n = 0 and so more generally:

€

X Ω() = Nak = x[n]exp − jnΩ()
n=−∞

n=∞

∑
Continuous Fourier
Transform of a discrete
sampled signal x[n]

Digital Fourier Transform
Similarly from the Digital Fourier Series:

€

x[n] = ak
k= 0

N−1

∑ exp
j2πkn
N

%
&

'
(

€

LetΩ0 =
2π
N

= thefundamentalfrequency

This permits us to write the synthesis equation as:

€

x[n] =
X kΩ0()
N

$ %
&

' (k= 0

N−1

∑ exp jknΩ0()

since, also by definition, X = Nak.

Since Ω0/2π = 1/N, where Ω0 = fundamental frequency we can write:

€

x[n] =
1
2π

X kΩ0()
k= 0

N−1

∑ exp jknΩ0()Ω0

Digital Fourier Transform

In addition:
as N → ∞, Ω0 → dΩ, kΩ0 → Ω and

€

→
k= 0

N−1

∑
2π
∫

€

x[n] =
1
2π

X Ω()exp jnΩ()dΩ
0

2π

∫

So finally we can write the 'Synthesis Transform'

Digital Fourier Transform
Example 3.2(a) (Paul and Fuerst)

Single isolated pulse with 5 non-zero
sample values - find its FT

€

X Ω() = x[n]exp − jnΩ()
n= −∞

n=∞

∑

x[n] is a running sum of weighted
impulses δ[n]

Ergo -
X(Ω) = 0.2{δ[n - 2] + δ[n - 1] + δ[n] + δ[n + 1] + δ[n + 2]}x exp(-jnΩ)

Using the sifting property of the unit impulse, i.e., δ[n - n0] → exp(-jn0Ω),
we can write X(Ω) = 0.2{exp(-j2Ω)+ exp(-jΩ) + 1 + exp(jΩ) + exp(j2Ω)}

Digital Fourier Transform
Example 3.2(a) (Paul and Fuerst) cont'd
x[n] is an even function of 'n' we have that exp(jΩ) → Cos(Ω),

X(Ω) = 0.2[1 + 2Cos(Ω)+ 2Cos(2Ω)]

Note that X(Ω) is a repetitive and periodic in Ω with period 2p (-π → +π)

Example 3.2(b) (Paul and Fuerst)

 X(Ω) = 0.5 + 0.25 exp(-jΩ)+ 0.125 exp(-j2Ω) +.....

€

= 0.5 0.5exp − jΩ(){ }n
n= 0

n=∞

∑ =
0.5

1−0.5exp(− jΩ)

x[n] = 0.5, 0.25, 0.125, 0.0625,...............

Digital Fourier Transform
X(Ω) is a complex function containing both sine and cosine sinusoids;
hence it is best displayed as amplitude and phase spectra-

Using

We get

€

X Ω() = X Ω()* X Ω()

€

X Ω() =
0.5

1.25 −CosΩ()
1
2

@ Ω = 0, |X(Ω)| = 1 (i.e., it is a maximum)
@ Ω = π, |X(Ω)| = 1/3 (i.e., it is a minimum)

Cf: Fig 3.8 in Lynn and Fuerst for plot of X(Ω) -

What does x[n] remind you of ?

Digital Fourier Transform

Fourier Transform of a single 'isolated' unit impulse

€

X Ω() = x[n]exp − jnΩ()
n= −∞

n=∞

∑

€

= δ[n]exp − jnΩ()
n=−∞

n=∞

∑

= 1.exp(0) = 1 !!!!!!!!!

Digital Fourier Transform
Since δ(Ω) = 1 it is real. Hence the Im{δ(Ω)=0}

€

δ Ω() = δ Ω()*δ Ω() =1

€

Φδ Ω() = Tan−1
Im δ Ω()[]
Re δ Ω()[]
&
'
(

)
*
+

= 0

So the signal strength is constant at all frequencies and each single
infinitely close Fourier component has exactly the same phase, i.e., the
phase shift between them is zero.

Digital Fourier Transform

Usual Properties for Fourier Transforms in the Digital Domain

Since δ(Ω) = 1 it is real. Hence the Im{δ(Ω)=0}

Linearity: ax1[n] + bx2[n] ⇔aX1(Ω) + bX2(Ω)

Time Shifting: x[n-n0] ⇔X(Ω)exp(-jn0Ω)

Convolution: x1[n] *x2[n] ⇔X1(Ω) x X2(Ω)

NB: Time shift ≡ multiplying the FT by exp(-jn0Ω) in the frequency domain

Also: Frequency domain multiplication ≡ time domain convolution

Digital Fourier Transform
Frequency Response of LTI Processors Cf: Fig 3.10

Digital LTI	

Processor	

Input Signal Output Signal x[n] y[n]

't' domain x[n] h[n] y[n] = h[n]*x[n]

'Ω' domain X(Ω) H(Ω) Y(Ω) = H(Ω) x X(Ω)

Using polar (magnitude/phase) representation in the Ω plane we have:
 X(Ω) = |X(Ω)|.exp[-jΦX(Ω)]

Similarly: H(Ω) = |H(Ω)|.exp[-jΦH(Ω)]
H(Ω) = LTI Processor Frequency Transfer Function,
|H(Ω)| = processor 'Gain' and ΦH(Ω) = processor Phase Transfer Function

Digital Fourier Transform
Example: Let's take 3.2 again but this time we designate x[n]'s as h[n]'s -
Then 3.8(a) is a weighted moving or 5-point adjacent channel average filter

Then from our earlier solution we have: H(Ω) = 0.2 {1+2Cos(Ω)+2Cos(2Ω)}-
Transfer Function for a 5 point moving average low pass filter - Fig 3.8(a)

Looking at positive Ω between 0 and π one can see that the filter
transmits low frequencies most strongly - LOW PASS FILTER action

Notice that the gain = 0 @ Ω = 2π/5 or 5 samples/cycle !

Looking at H(Ω) one can see that it is real-symmetric,
hence no phase shifts are introduced

Figure 3.8 (a)

Digital Fourier Transform

One can see that this is also clearly a low pass filter - but not a very
good one. Significant transmission at Ω = π (|H(Ω)| = 1/3)

Now consider figure 3.8 (b). This picture now refers to the impulse
response of a low pass filter:

 h[n] = 0.5δ[n] + 0.25δ[n-1] + 0.0625δ[n-2] + ...

€

H Ω() =
0.5

1−0.5exp − jΩ()
Correspondingly:

And:

€

H Ω() =
0.5

1.25 −Cos Ω()()0.5

 Figure 3.8 (b)

Digital Fourier Transform
General specification of LTI processors in the 'Ω' domain

In general we know that a LTI processor can be specified by a
difference equation of the form:

€

cl
l= 0

l=L

∑ y[n − l] = dl
l= 0

l= I

∑ x[n − l]

where 'L' is the order of the system and cl are the recursive
multiplier coefficients. Taking Fourier Transforms of both sides:

€

cl
l= 0

l=L

∑ exp − jlΩ()Y Ω() = dl
l= 0

l= I

∑ exp − jlΩ()X Ω()

using linearity and time shifting properties of the Fourier Transform

Digital Fourier Transform
We also have that: Y(Ω) = H(Ω) x X(Ω) and hence that: H(Ω) = Y(Ω)/X(Ω)

So we can write:

€

H Ω() =
Y Ω()
X Ω()

=

dl
l= 0

l= I

∑ exp − jlΩ()

cl
l= 0

l=L

∑ exp − jlΩ()

T	

T	

+	

0.8	

x[n]	

y[n]	

Example 3.3: Find
magnitude & phase of H(Ω)

+	

-	

-	

Digital Fourier Transform

Inspection of the flow of the block diagram:
y[n] = -0.8y[n-1] + x[n] - x[n-1] which can be written

y[n] + 0.8y[n-1] = x[n] - x[n-1]

c0 c1 d0 d1

By inspection: c0 = 1.0, c1 = 0.8, d0 = 1.0, d1 = -1.0

Using:

€

H Ω() =

dl
l= 0

l= I

∑ exp − jlΩ()

cl
l= 0

l=L

∑ exp − jlΩ()

Digital Fourier Transform

€

H Ω() =
1.exp − j0()[] + −1.exp − jΩ()[]
1.exp − j0()[] + 0.8.exp − jΩ()[]

We get:

€

H Ω() =
1− exp − jΩ()

1+ 0.8.exp − jΩ()=

€

⇒ H Ω() =
1− CosΩ+ jSinΩ

1+ 0.8CosΩ−0.8 jSinΩ

€

⇒ H Ω() =
1−CosΩ()2 + Sin2Ω[]

1/ 2

1+ 0.8CosΩ()2 + 0.64Sin2Ω[]
1/ 2

Digital Fourier Transform

So we can write:

€

H Ω() =
2 − 2CosΩ

1.64 −1.6CosΩ
$
%

&
'

1/ 2

Phase Spectrum:

€

ΦH Ω() = Tan−1
ImH Ω()
ReH Ω()
%

& '
(

) *

€

⇒ ΦH Ω() = Tan−1
SinΩ

1− CosΩ
&
'

(
)
−Tan−1

−0.8SinΩ
1+ 0.8CosΩ
&
'

(
)

Cf: Fig 3.11 for plots of magnitude |H(Ω)| and phase ΦH(Ω)
transfer functions or 'gain profiles'

The processor is a High Pass Filter with a gain of 10 @ Ω=π

Program no 9 to investigate 90, 91 & 92. Figs 3.12 & 3.13

