
PS403 - Digital Signal processing 

III. DSP - Digital Fourier Series and Transforms 

Key Text:  

Digital Signal Processing with Computer Applications  (2nd Ed.)  
Paul A Lynn and Wolfgang Fuerst, (Publisher: John Wiley & Sons, UK) 

 

We will cover in this section 
How to compute the Fourier series for a periodic digital waveform 

How to compute the Fourier transform for an aperiodic digital waveform 

Deconvolution in the frequency domain 



Introduction - Digital Fourier Series and Transforms 
Jean Baptiste Fourier - (1768 - 1830).  
 
Reasons to work in the Fourier domain. 
 
1.  Sinusoidal waveforms occur frequently in nature 

2.  Given the frequency spectrum of an I/P signal I(f) and the frequency  
 transfer function of of an LTI processor H(f) , we can compute the  
 spectrum of the processed signal by simple multiplication:  

O(f) = I(f) x H(f) 

3.  Much of DSP design is concerned with frequency transmission 



 
 
Properties of signals in the frequency domain: 
 
1.  Signals, symmetric (centred) about time t = 0 contain only cosines 

2.  Periodic and infinitely long signals (waveforms) may be synthesised  
 from a superposition of harmonically related sinusoids. Hence they  
 may be represented by Fourier series and exhibit line spectra 

3.  Aperiodic signals (such as single isolated pulses exponential 
 waveforms, etc.) contain a continuum of frequencies (continuum 
 spectrum) are so are represented by the Integral Fourier Transform 

Introduction - Digital Fourier Series and Transforms 



Digital Fourier Series 

Infinitely long, periodic waves can be represented by a superposition 
of sinusoids of varying amplitude and relative phase at the fundamental  
frequency and its harmonics. 
 
The amplitudes of each component sinusoid for a sampled data  
signal/waveform x[n], where x[n] contains N values,  are given by: 
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Analysis Equation 



Digital Fourier Series 
x[n] may also be reconstructed from its 'Harmonic Amplitudes' (ak) 
using the so-called 'Synthesis Equation' 
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Example: 
See fig 3.1.  Waveform with a period of 7 samples per cycle. Equation 1 
is complex and has to be split into two parts for computation:  
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k Real Part
of ak

Imaginary
Part of ak

0 0.4 285 715 0
1 0.3 018 007 -0.1 086 581
2 0.7 864 088 0.3 847 772
3 -0.3 024 935 -0.6 687 913
4 -0.3 024 928 0.6 687 927
5 0.7 864 058 -0.3 847 782
6 0.3 018 006 0.1 086 581

x[n]; -1, -1, 1, 2, 1, -2, 3, -1, -1, 1, 2, 1, -2,....... 

One cycle (7 samples) 

Digital Fourier Series 
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Digital Fourier Series 
DIM X(100), AKR (100), AKI (100) 
OPEN "Xn.dat" FOR INPUT AS #1 
OPEN "Ak.dat" FOR OUTPUT AS #2 
PRINT #2, "K", TAB(20);"Re (ak)";TAB(40); "Im(ak)" 
FOR i = 0 TO 6 
INPUT #1, X(i) 
NEXT I 
FOR k = 0 to 6 
AKR(k) = 0.0, AKI(k) = 0.0 
FOR j = 0 to 6 
AKR(k) = AKR(k) + X(j)*COS((2*3.1.41.6*j*k)/7) 
AKI(k) = AKI(k) + X(j)*Sin((2*3.1.41.6*j*k)/7) 
NEXT j 
AKR(k) = AKR(k)/7 
AKI(k) = AKI(k)/7 
PRINT #2, k, TAB(20); AKR(k);TAB(40); AKI(k) 
NEXT k 

2
1
-2
3
-1
-1
1

Input file 
”Xn.dat" 



Digital Fourier Series 
Points to note: 
1.  A sampled periodic data signal with 'N' samples/period in the 'time' 

 domain will yield 'N' real and 'N' imaginary harmonic amplitudes 
 (or Fourier coefficients) in the 'k' or discete frequency domain. 

 
2.  The line spectrum will repeat itself every 'N' values, i.e., the spectrum 

 itself is repetitive and periodic - but we need only the 'N' harmonic 
 amplitudes to completely specify/ synthesise an 'N' valued' signal 

 
3.  Notice for a sampled data signal x[n] which is a real function of 'n',  

 i.e., real valued signal, the real values of ak display mirror image  
 symmmetry; a1 = 16, a2 = a5, etc. (True also for the imaginary  
 coefficients but with a sign change - see Fig 3.1) 

 
Note that as N  ∞, we move towards a single, non repeating waveform, 
i.e., an aperiodic signal. The harmonic amplitudes get very small (1/N) and 
frequencies infinitely close - i.e., we go to a continuum of frequencies -  
Discrete Fourier Transform needed to analyse/synthesise such signals. 



Digital Fourier Series - 
Amplitude and Phase Spectra 

For a periodic signal the magnitude of each harmonic amplitude is 
given by: 
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ak = Re ak( )2 + Im ak( )2

The corresponding phase angle for each frequency (harmonic) is  
given by: 
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A plot of |ak| vs k yields the 'Amplitude Spectrum' 
 

A plot of Φk vs k yields the 'Phase Spectrum' 



Digital Fourier Series 
Example. Consider a signal with three frequency components; 
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x[n] =1+ Sin
nπ
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dc cmpt 
(offset) 

8 samples 
per cycle 

4 samples 
per cycle 

It is clear that a full cycle of x[n] will require its evaluation over the 'n' 
range, 0≤n≤7: 

n 0 1 2 3 4 5 6 7
X[n] 3.000 1.707 0.000 1.707 3.000 0.293 -2.000 0.293



Digital Fourier Series 
We can extract the harmonic amplitudes (ak) directly from the 
Analysis Equation is we rewrite x[n] in Euler notation: 
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So we can now write x[n] as: 
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Digital Fourier Series 
Noting that: 1/2j = -j/2 and  exp(jnπ/2) = exp(2jnπ/4) 

€ 

x[n] =1+
j
2
exp

− jnπ
4

$ 
% 

& 
' 
−
j
2
exp

jnπ
4

$ 
% 

& 
' 

+ exp
−2 jnπ
4

$ 
% 

& 
' 

+ exp
2 jnπ
4

$ 
% 

& 
' 

We can then write x[n] as:  
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We see that: a0 = 1, a1 = -j/2, a2 = 1, a-1 = j/2 and a-2 = 1  

x[n] has eight values but there are only five non-zero ak values ⇒  
the other three values must be = 0 
 
Also there are three real values of ak and two imaginary values of ak 



Digital Fourier Series 

k Re(ak) Im(ak) |ak| Φk

-2 1 0 1 0
-1 0 0.5 0.5 π/2
0 1 0 1 0
1 0 -0.5 0.5 π /2
2 1 0 1 0
3 0 0 0 0
4 0 0 0 0
5 0 0 0 0

The values can be tabulated below -  

PLOT all x[n] and ak values  

Notes: 
If x[n] = -x[-n], i.e., x[n] is an odd function of 'n', then all Re(ak) = 0 
or equivalently, odd periodic signals can be constructed from 'Sine' fns 
 
Conversely, if x[-n] = x[n], i.e., x[n] is an even function of 'n', then all Im(ak)  
= 0 and so even periodic signals can be constructed from 'Cosine' fns 



Useful properties of Fourier Series 
Digital Fourier Series 

(a)  Linearity 
if x1[n] → ak and x2[n] → bk, then A.x1[n] + B.x2[n]  → A.ak +  B.bk 
 
(b)  Time-Shifting 
if x[n] → ak, then if x[n-n0] → ak exp[-j2πkn0/N] 

Magnitude 
spectrum 
unchanged 

But phase 
spectrum 
shifted by 
extra factor 

  Note: for n0 = N (1 Complete cycle of x[n]),  
exp[-j2πkn0/N] = exp[-j2πk] = 1, 

Hence the spectrum is said to be 'circular' or 'cyclic' 



Digital Fourier Series 

(c)   Differentiation 
  if x[n] → ak, then x[n] - x[n-1] → ak {1 - exp[-j2πk/N]} 

1st order difference of 
x[n] →  differentiation 

The time-shifting property gives x[n - 1] → akexp[-j2πk/N].  
Then apply linearity property to get spectrum of the differentiated signal !   

(d)  Integration → running sum of x[n] 
 if x[n] → ak, then 
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Digital Fourier Series 
(e)   Convolution 

  if x1[n] → ak and x2[n] → bk, then 

€ 

Rx1,x 2 = x1
m=0

N−1

∑ [m].x2[n −m]→ NakbkConvolution over a  
single cycle of 'N'  
data points Circular Convolution  

(f)  Modulation Property [Inverse of convolution] 
 if x1[n] → ak and x2[n] → bk, then 
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x1.x2 → am
m= 0

m=N−1

∑ bk−m



Digital Fourier Series - Progamme no. 8 
Investigaton of a multifrequency signal (Fig 3.3) 
 
Effect of 'end-to-end' vs non integral number of cycles (Fig 3.4) 
 
Spectrum of a unit impulse (Fig 3.5). [Actually it is an impulse train and  
periodic (as it has to be in order that Fourier Series can be used to  
represent the signal - period is set by the 64 samples]. Assume that the 
signal repeats every 64 samples. Note Φk = 0 and ak = 1/N = 1/64. 
 
Delayed unit impulse (Fig 3.6).  ak = 1/64 as before but is a Φk = 
'Linear Phase Characteristic' 
 
Equation 3.9. Parseval's Theorem applied to sampled data signals 

Average Energy/Cycle 
in the Time Domain 

Average Energy/Cycle 
in the Frequency Domain 
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Digital Fourier Transform 

In fact we are not studying the DFT. Rather it is the continuous FT of a  
discrete (and finite) sampled data signal that we will deal with here ! 

To represent aperiodic signals and noise 'signals' we need to invoke 
Fourier Transforms 

APERIODIC 

Not strictly repetitive 

Repetitive but not strictly periodic 

Cf: Appendix 2 of Paul and Fuerst for a review of  
continuous time Fourier Transforms 



Digital Fourier Transform 
In what follows we develop the digital FT from digital FS. 

Consider again the analysis (equation) form of the Fourier Series: 
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x[n].exp
− j2πkn
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Where x[n] is cyclic or periodic with period 'N' samples, e.g.,  
consider the signal in Fig 3.7(a) where N = 5 

Now consider what happens when adjacent cycles  
are artificially separated or spaced in time - Fig 3.7 (b) 

Signal is in effect 'stretched' from N=5 to N=12 samples/cycle - 



But what happens in the frequency domain ? 

Digital Fourier Transform 

(a)  Amplitudes will become smaller since ak ∝1/N 
 
(b)  Also the number of frequencies (k values) will increase, i.e., the 

 frequency components labelled by 'k' will get closer to each other  
 (bunch up) 

In the limit as N → ∞, frequency will become a continuous variable. 
i.e., we move from a line spectrum to a continuum spectrum 

In the limit as N → ∞, the summation of discrete frequency which 
characterises the FS will become an integral over continuous frequency 
 
See this on next slides....................... 



Digital Fourier Transform 
Development of Fourier Transform from Fourier Series 

The discrete frequency 2πk/N becomes Ω - continuous frequency (radians) 

2πk/N →  Ω	

DFS  →  'DFT'  

Firstly we rewrite the FS analysis equation with continuous frequency - 
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X Ω( ) = Nak = x[n]exp − jnΩ( )
n= 0

n=∞

∑
We often make x[n] symmetric about n = 0 and so more generally: 
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X Ω( ) = Nak = x[n]exp − jnΩ( )
n=−∞

n=∞

∑
Continuous Fourier 
Transform of a discrete 
sampled signal x[n] 



Digital Fourier Transform 
Similarly from the Digital Fourier Series: 
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LetΩ0 =
2π
N

= thefundamentalfrequency

This permits us to write the synthesis equation as: 
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since, also by definition, X = Nak.  

Since  Ω0/2π = 1/N, where Ω0 = fundamental frequency we can write: 
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Digital Fourier Transform 

In addition: 
as N → ∞,  Ω0 → dΩ,  kΩ0 → Ω and  
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→
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∫
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x[n] =
1
2π

X Ω( )exp jnΩ( )dΩ
0

2π
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So finally we can write the 'Synthesis Transform' 



Digital Fourier Transform 
Example 3.2(a) (Paul and Fuerst) 

Single isolated pulse with 5 non-zero 
sample values - find its FT 
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X Ω( ) = x[n]exp − jnΩ( )
n= −∞

n=∞

∑

x[n] is a running sum of weighted  
impulses δ[n] 

Ergo -  
X(Ω) = 0.2{δ[n - 2] + δ[n - 1] + δ[n] + δ[n + 1] + δ[n + 2]}x exp(-jnΩ) 

Using the sifting property of the unit impulse, i.e., δ[n - n0] → exp(-jn0Ω), 
we can write X(Ω) = 0.2{exp(-j2Ω)+ exp(-jΩ) + 1 + exp(jΩ) + exp(j2Ω)} 



Digital Fourier Transform 
Example 3.2(a)  (Paul and Fuerst) cont'd 
x[n] is an even function of 'n' we have that exp(jΩ) → Cos(Ω), 

X(Ω) = 0.2[1 + 2Cos(Ω)+ 2Cos(2Ω)] 

Note that X(Ω) is a repetitive and periodic in Ω with period 2p (-π → +π)  

Example 3.2(b) (Paul and Fuerst) 

 X(Ω) = 0.5 + 0.25 exp(-jΩ)+ 0.125 exp(-j2Ω) +..... 

€ 

= 0.5 0.5exp − jΩ( ){ }n
n= 0

n=∞

∑ =
0.5

1−0.5exp(− jΩ)

x[n] = 0.5, 0.25, 0.125, 0.0625,............... 



Digital Fourier Transform 
X(Ω) is a complex function containing both sine and cosine sinusoids; 
hence it is best displayed as amplitude and phase spectra- 

Using 
 
 
We get   
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X Ω( ) = X Ω( )* X Ω( )

€ 

X Ω( ) =
0.5

1.25 −CosΩ( )
1
2

@ Ω = 0, |X(Ω)|  = 1 (i.e., it is a maximum) 
@ Ω = π, |X(Ω)|  = 1/3 (i.e., it is a minimum) 

Cf: Fig 3.8 in Lynn and Fuerst for plot of X(Ω) -  
 

What does x[n] remind you of ? 



Digital Fourier Transform 

Fourier Transform of a single 'isolated' unit impulse  
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X Ω( ) = x[n]exp − jnΩ( )
n= −∞

n=∞

∑
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= δ[n]exp − jnΩ( )
n=−∞

n=∞

∑

= 1.exp(0) = 1 !!!!!!!!! 



Digital Fourier Transform 
Since δ(Ω) = 1 it is real. Hence the Im{δ(Ω)=0} 
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δ Ω( ) = δ Ω( )*δ Ω( ) =1
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Φδ Ω( ) = Tan−1
Im δ Ω( )[ ]
Re δ Ω( )[ ]
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= 0

So the signal strength is constant at all frequencies and each single 
infinitely close Fourier component has exactly the same phase, i.e., the  
phase shift between them is zero.  



Digital Fourier Transform 

Usual Properties for Fourier Transforms in the Digital Domain 

Since δ(Ω) = 1 it is real. Hence the Im{δ(Ω)=0} 

Linearity:  ax1[n] + bx2[n] ⇔aX1(Ω) + bX2(Ω) 
 
Time Shifting:  x[n-n0] ⇔X(Ω)exp(-jn0Ω) 
 
Convolution:  x1[n] *x2[n] ⇔X1(Ω) x X2(Ω) 

NB: Time shift ≡ multiplying the FT by exp(-jn0Ω) in the frequency domain 
 
Also: Frequency domain multiplication ≡ time domain convolution 



Digital Fourier Transform 
Frequency Response of LTI Processors Cf: Fig 3.10 

Digital LTI	

Processor	


Input Signal Output Signal x[n] y[n] 

't' domain  x[n]   h[n]   y[n] = h[n]*x[n] 

'Ω' domain  X(Ω)   H(Ω)   Y(Ω) = H(Ω) x X(Ω) 

Using polar (magnitude/phase) representation in the Ω plane we have: 
   X(Ω) = |X(Ω)|.exp[-jΦX(Ω)] 

 
Similarly:   H(Ω) = |H(Ω)|.exp[-jΦH(Ω)] 
H(Ω) =  LTI Processor Frequency Transfer Function,  
|H(Ω)|  = processor 'Gain' and ΦH(Ω) = processor Phase Transfer Function 



Digital Fourier Transform 
Example: Let's take 3.2 again but this time we designate x[n]'s as h[n]'s -  
Then 3.8(a) is a weighted moving or 5-point adjacent channel  average filter 

Then from our earlier solution we have: H(Ω) = 0.2 {1+2Cos(Ω)+2Cos(2Ω)}-  
Transfer Function for a 5 point moving average low pass filter - Fig 3.8(a) 

Looking at positive Ω between 0 and π one can see that the filter 
transmits low frequencies most strongly - LOW PASS FILTER action 

 
Notice that the gain = 0 @ Ω = 2π/5 or 5 samples/cycle ! 

Looking at H(Ω) one can see that it is real-symmetric,  
hence no phase shifts are introduced  

Figure 3.8 (a) 



Digital Fourier Transform 

One can see that this is also clearly a low pass filter - but not a very 
good one. Significant transmission at  Ω = π (|H(Ω)| = 1/3) 

Now consider figure 3.8 (b). This picture now refers to the impulse 
response of a low pass filter:  

   h[n] = 0.5δ[n] + 0.25δ[n-1] + 0.0625δ[n-2] + ...  

€ 

H Ω( ) =
0.5

1−0.5exp − jΩ( )
Correspondingly:  

And: 

€ 

H Ω( ) =
0.5

1.25 −Cos Ω( )( )0.5

 Figure 3.8 (b) 



Digital Fourier Transform 
General specification of LTI processors in the 'Ω' domain  

In general we know that a LTI processor can be specified by a 
difference equation of the form: 
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cl
l= 0

l=L

∑ y[n − l] = dl
l= 0

l= I

∑ x[n − l]

where 'L' is the order of the system and cl are the recursive 
multiplier coefficients. Taking Fourier Transforms of both sides: 
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l=L

∑ exp − jlΩ( )Y Ω( ) = dl
l= 0

l= I

∑ exp − jlΩ( )X Ω( )

using linearity and time shifting properties of the Fourier Transform 



Digital Fourier Transform 
We also have that: Y(Ω) = H(Ω) x X(Ω) and hence that: H(Ω) = Y(Ω)/X(Ω) 

So we can write:  
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H Ω( ) =
Y Ω( )
X Ω( )

=

dl
l= 0

l= I

∑ exp − jlΩ( )

cl
l= 0

l=L

∑ exp − jlΩ( )

T	


T	


+	


0.8	


x[n]	

y[n]	


Example 3.3: Find 
magnitude & phase of H(Ω)  

+	


-	


-	




Digital Fourier Transform 

Inspection of the flow of the block diagram: 
y[n] = -0.8y[n-1] + x[n] - x[n-1] which can be written 

 
y[n] + 0.8y[n-1] = x[n] - x[n-1] 

c0 c1 d0 d1 

By inspection: c0 = 1.0, c1 = 0.8, d0 = 1.0, d1 = -1.0   

Using: 
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H Ω( ) =

dl
l= 0

l= I

∑ exp − jlΩ( )

cl
l= 0

l=L

∑ exp − jlΩ( )



Digital Fourier Transform 
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H Ω( ) =
1.exp − j0( )[ ] + −1.exp − jΩ( )[ ]
1.exp − j0( )[ ] + 0.8.exp − jΩ( )[ ]

We get: 
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H Ω( ) =
1− exp − jΩ( )

1+ 0.8.exp − jΩ( )= 
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⇒ H Ω( ) =
1− CosΩ+ jSinΩ

1+ 0.8CosΩ−0.8 jSinΩ
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⇒ H Ω( ) =
1−CosΩ( )2 + Sin2Ω[ ]

1/ 2

1+ 0.8CosΩ( )2 + 0.64Sin2Ω[ ]
1/ 2



Digital Fourier Transform 

So we can write:  
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H Ω( ) =
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Phase Spectrum: 

€ 
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Cf: Fig 3.11 for plots of magnitude |H(Ω)| and phase ΦH(Ω)  
transfer functions or 'gain profiles' 

The processor is a High Pass Filter with a gain of 10 @ Ω=π 

Program no 9 to investigate 90, 91 & 92. Figs 3.12 & 3.13 


