PS403 - Digital Signal processing

I. DSP - Introduction

Key Text:

Digital Signal Processing with Computer Applications (2nd Ed.)

Paul A Lynn and Wolfgang Fuerst, (Publisher: John Wiley & Sons, UK)

We will cover in this section

Some examples of algorithmns

Basic terminology

Definition: Numerical manipulation of sampled (data) signals

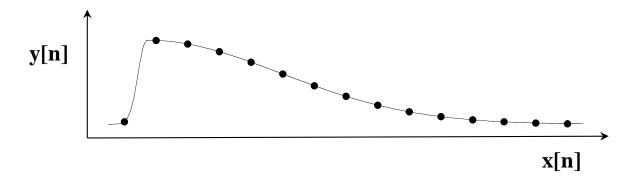
Example 1. 200 day (moving) average of the dollar price of gold!

This genre of filter is variously referred to as:

Savitsky Golay - Moving Average - Adjacent Channel Average - Low Pass Filter

In general we will be writing y[n] = f(x[n]) where y is the table of outputs and x[n] is the list of input values.

200 point moving average: x[n] - input, y[n] - output - see Fig 1.3


$$y[n] = \frac{1}{200} (x[n] + x[n-1] + \dots x[n-199])$$

OR

$$y[n] = \frac{1}{200} \sum_{k=0}^{k=199} x[n-k] \quad (1)$$
Recurrence
Formula

NB: This is a **non-recursive formula** (filter) since each y[n] is computed from an existing (pre-recorded) set of input signal values x[n]

Recursive moving average algorithmn

We can make this filter recursive!!

Notice that you can write equation 1 as:

$$y[n] = y[n-1] + 0.005\{x[n] - x[n-199]\} - (2)$$

Much more computationally efficient than the non recursive version -

Recursive - compute current value of output y[n] from one or more previous values y[n-m], m = 1, 2, 3,...

Example 2. Bandstop filter

We take the example of a typical EKG (Electro-Cardiogram) signal. Such signals are usually low power (microvolts/ nanoamps) and so power can be as low as femtowatts! As a result, 50 Hz mains frequency often appears as 'pickup' superimposed on the EKG signal. The EKG leads act as 'aerials'. See Fig 1.4.

So we need a digital filter algorithmn that rejects 50 Hz (or 60 Hz in the USA)

$$y[n] = 1.8523y[n-1] - 0.94833y[n-2] + x[n] - 1.9021x[n-1] + x[n-2] - (3)$$

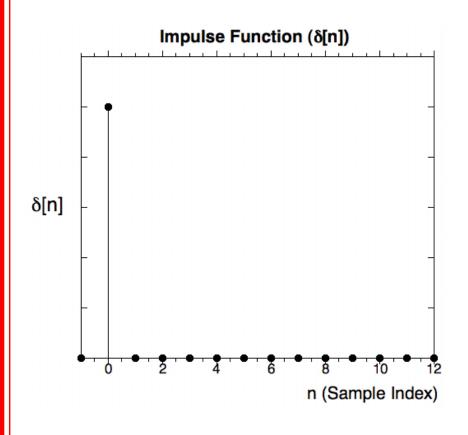
Notice that this is also a recursive formula (filter)

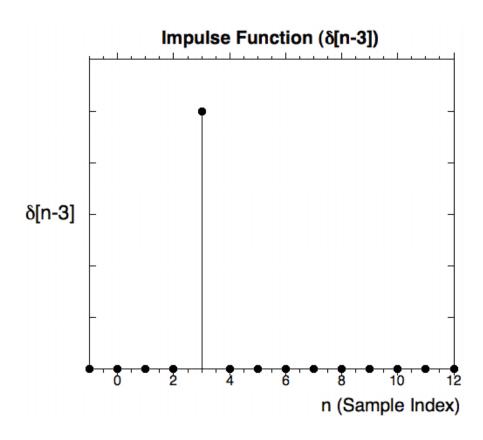
Recomputing y[n] (filtered signal) from the distorted sample values x[n] you obtain the very clean EKG signal in figure 1.4c - Good eh ?????

NB1: A digital filter is designed for a specific sampling rate. Here the sampling rate is 1 KHz for 50 Hz rejection. However, if the contaminated signal is sampled at 1.2 KHz, the rejected frequency will be 60 Hz

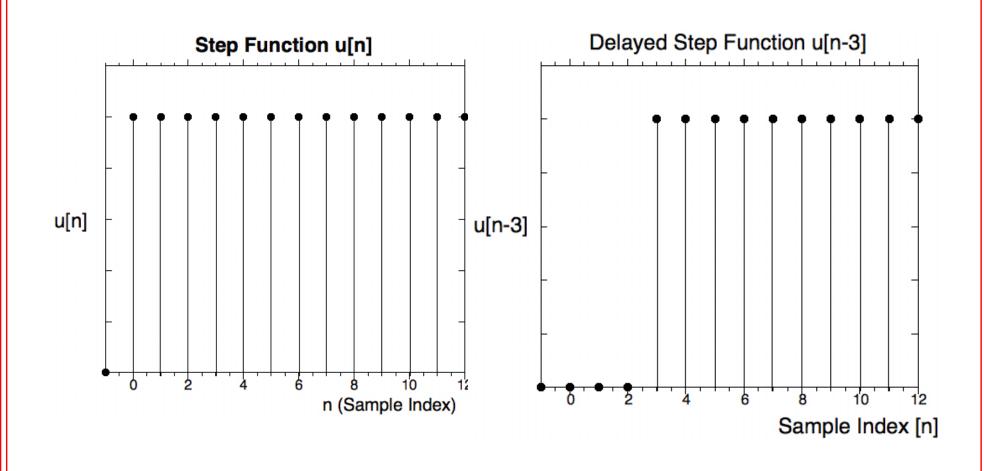
NB2: The real skill you will learn is the ability to design these algorithms - i.e., to be able to determine what terms should be included and what the multipliers are.

Example 3. Bandpass filter - See Fig 1.5.

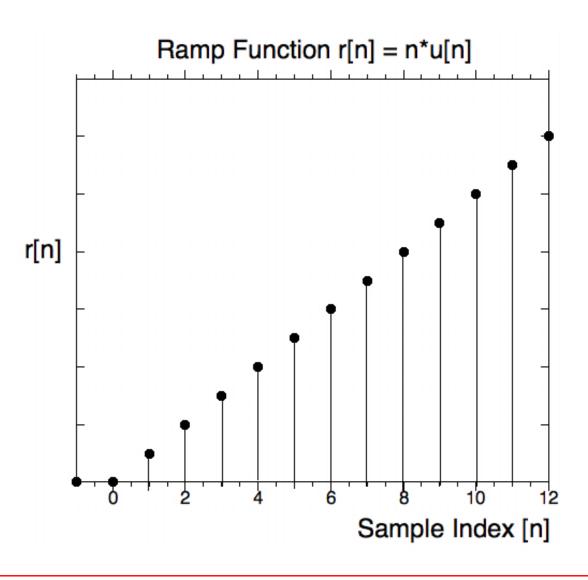

$$y[n] = 1.5y[n-1] - 0.85y[n-2] + x[n] - (4)$$

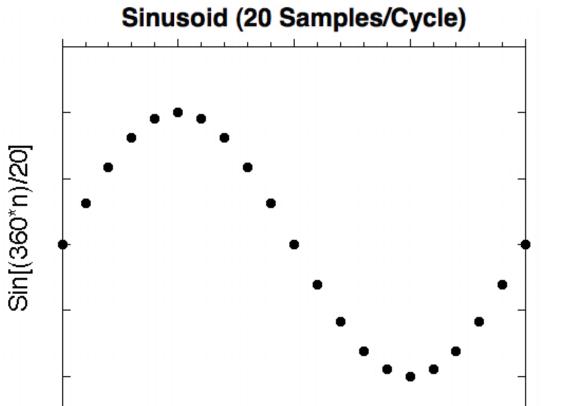

Notice that this is also a recursive formula (filter)

Recursive filter designed to transmit a sinusoidal signal which has been recorded at 10 samples/cycle. For lower or higher sample rates (samples/cycle) the gain is lower. Hence the filter exhibits a 'bandpass' action.


Figure 1.5 shows the action of this filter on a 'swept' frequency waveform running from 20 samples/cycle (on the left hand side) to 5 samples per cycle (on the right hand side). As you can see gain is maximum at 10 samples/cycle.

1. Impulse or ' δ ' function



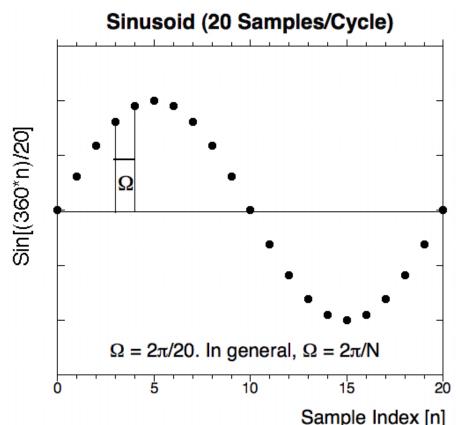

2. Step function

3. Ramp function

4. Sinusoidal Function

10

Sample Index [n]


Q. How would you synthesise a pulse of width (or duration) 8 samples, starting at n = -3 and ending at n = 4?

Ans.
$$x[n] = u[n+3] - u[n-5]$$

i.e., Add a unit step function starting at n = -3 to a step function, delayed by 5 samples to start at n = 5, which has an amplitude of -1 per point!!

Draw it and see for yourself !!!

Sampling frequency and samples/cycle

A DSP system does not understand the concept of absolute frequency!!

However, it can understand/deal with 'samples per cycle' and this is how frequency is represented in DSP.

So a 1 Hz sinusoid sampled at 20 Hz gives the same data set as a 1MHz sinusoid sampled at 20 MHz - i.e., 20 samples/cycle!

NB: When we design DSP filters (algorithmns), we do so for a specific 'sampling frequency' given in 'samples per cycle' but not a specific absolute frequency!!

Sampling frequency and samples/cycle

From the previous figure, 1 full cycle = 2π radians. The sampling interval = Ω radians, so N = $2\pi/\Omega$

In absolute time, the sampling interval = T_s (seconds) The sampling frequency, $f_s = 1/T_s$, or $\omega_s = 2\pi/T_s$.

Connection: $\omega_s T_s = 2\pi = N\Omega$.

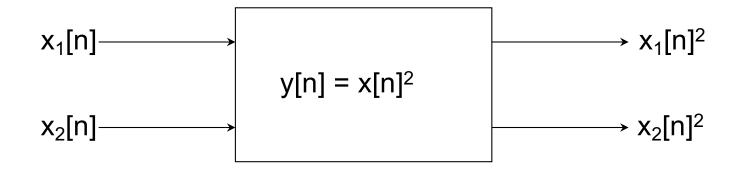
In general -

 $x[n] = Sin(n\Omega) = Sin(n.2\pi/N)$

Linear Time-Invariant (LTI) Systems

This module will deal only with linear signals and systems, i.e., we will not cover more advanced topics such as non-linear DSP!

Time invariant means we will ignore systems whose properties vary with time and hence require the application of adaptive DSP strategies to control them.


Linear:

If the input to a system is composed of a superposition of signals (stimuli), then the output is simply a superposition of the system's response to each individual stimulus (or input signal component).

i.e., if
$$x[n] = a.x_1[n] + b.x_2[n] + c.x_3[n] +$$

then $y[n] = a.y_1[n] + b.y_2[n] + c.y_3[n] +$

Linear Time-Invariant (LTI) Systems

Non-linear example: Squaring system

For
$$x[n] = x_1[n] + x_2[n]$$
, $y[n] = (x_1[n] + x_2[n])^2 \neq x_1[n]^2 + x_2[n]^2$

Also, frequency is not preserved in non linear systems!!

For $x[n] = Cos(n\Omega)$, $y[n] = Cos^2(n\Omega) = 1/2\{1 + Cos(2n\Omega)\}$, i.e., the squaring operation doubles the frequency of the input sinusoid.

Other Properties of LTI Systems

Association - A complex LTI system may be analysed by breaking it down into a number of simpler systems. Conversely, a complex system can be synthesised from a number of simpler component systems

Commutation - Any array of LTI systems arranged in series (cascaded) may be re-arranged in any order without affecting the system response

Causality - In a causal system, the output signal depends only on the present (or previous) input values

Stability - A stable system is one which produces a finite (or bounded) output for a bounded input

Invertibility - If a digital processor produces an output y[n] for an input x[n], it will produce and output x[n] for an input y[n] - (reversibile system)

Memory - A DSP system must possess memory if the present output y[n] depends on previous input x[n-m] or output y[n-m] values

LTI Systems

Digital LTI Processor Operations:

- 1. Storage and delay
- 2. Addition and subtraction
- 3. Multiplication by a constant

See Figure 1.19 for block diagram representations of typical DSP processors employing 1, 2 & 3 above.

$$(1.19a) y[n] = x[n] + x[n-1] + x[n-2] + x[n-3] + x[n-4] +$$

$$(1.19b) y[n] = y[n-1] + x[n] (recursive filter - feedback !)$$

$$(1.19c) y[n] = 1.8523y[n-1] - 0.94833y[n-2] + x[n] - 1.9021x[n-1] + x[n-2]$$

- Bandstop filter for 20 samples/cycle!

NEXT SECTION -TIME DOMAIN ANALYSIS IMPULSE RESPONSE AND CONVOLUTION