Lecture 3

I. THE PARTITION FUNCTION OF A SYSTEM

Thus far we have considered the so-called single particle partition function, defined as
Zsp = Zgie_kﬂflT, and then got F' = —NkpgT'In Z,,. However, it is also possible to define a

partition function for the whole system. For distinguishable particles we can define
_ TFAT\N _ N
ZN - (Zgle kBT) - Zsp (1)

and we now get ' = —kgT'In Zy. Similarly U, and S are the same as before, apart from

the factor of N. The reason this works can be seen by writing
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where each sum is for a different particle. Note that the ¢;,¢;, ¢..... are independent of each

other (because the particles are separate and distinguishable) and so this is equivalent to
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where F; is one of the energy levels of the entire system of particles. Thus for distinguishable

particles

Iy =7N (4)
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S =kglnZy + kgT aTN (6)
F=—kgTlnZy (7)

You are probably asking yourself why we bothered to do this. What was wrong with

our formulae before? Well, nothing really. It’s just that when we go on to deal with



indistinguishable (rather than distinguishable) particles that obey Boltzmann statistics we
will find that they also obey equations (5) to (7). However, for indistinguishable particles
there is a different relationship between the single particle partition function, and that for

the whole system. We will deal with this in the next lecture.

II. EXAMPLE 1 - A PARAMAGNET

Up until now everything has been quite general, and no doubt you are starting to wonder
what is the relevance of all these pages of formulae to the price of sugar. So, before you get
lost in the abstractness of it all, lets start to apply these formulae to some relatively simple
physical systems. I have picked two - a paramagnetic solid, and an array of simple harmonic
oscillators. You will also encounter these again later in your course - when you cover solid

state physics.

An atom with 1 electron outside a closed shell has spin
half. In a magnetic field, the spin aligns parallel or
antiparallel to the field. Energy 1B,

B- Held
®O O 8 4
® ® ® @ Magnetic Field >

QNORORO Z,= & 7T 1o "I~ pcostEEE
@ ® @ @ Lk, TC

Figure 1: The paramagnet is an array of particles with net angular momentum. In this simple
case J = S = 1/2, and in the presence of a magnetic field the spins align parallel or antiparallel

with the field, with energies +upB



The paramagnet consists of a set of atoms in a crystal lattice. Because the atoms
are situated at particular positions we can tell which is which - that is to say they are
distinguishable because they are localised. Now, suppose each atom has angular momentum
J. You will recall from your study of quantum mechanics that this means that the z
component of the angular momentum can take on all the values from —m to +my, and the
state is (2J + 1) degenerate. For simplicity, let’s assume J = S = 1/2, so the state is only
doubly degenerate. When we apply a magnetic field, B, the degeneracy is lifted, and the
two states shift in energy by +gupmyB = tugB (here ¢ is the g-factor, and pp the Bohr

magneton). The energy levels are shown in Fig. 1.
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Figure 2: (a) The internal energy as a function of temperature. At low 7" it is —Nupg, with 0
energy taken to be the high temperature limit. (b) Internal energy as a function of magnetic field,

at a temperature of T' = up/kp

Now, what’s the single particle partition function? Well, in this particular case it’s easy,
as there are only two states (this is a bit like our first example of tossing coins, but now one

of the states - the head or the tail, whichever we chose, has more energy than the other). So
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I have claimed that we can get all the thermodynamic functions from this partition function.
As examples, we will derive the internal energy, the specific heat, the entropy and the

magnetisation. First the internal energy. Using equation (5)
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The internal energy as a function of 7" and B is shown in Fig.2.
The heat capacity can be found by differentiating the internal energy with respect to
temperature. I leave it as an exercise (it is on the problem sheets) for you to demonstrate

that:
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Notice the limiting forms of the heat capacity, i.e.

C = T2 as T = o0 (11)
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Figure 3: Heat capacity of the paramagnet for two different magnetic fields - the full line is for

1 Tesla, the dotted line is 2 Tesla. Temperature in units of ug/kp



The heat capacity for two different magnetic fields is plotted in Fig. 3. Note that we
predict a peak in the specific heat due to the magnetic spins which depends on the applied
field. This is called the Schottky Anomaly, and can actually be observed in real systems.
Having predicted the behaviour of U and €' from the partition function, let us turn our

attention to the entropy, using equation (6):
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And the limiting values of the entropy are:
When kgT > upB, S — Nkgln2 and kgT <« ugB, S—=0 (14)

This is exactly what we would expect. At very low temperatures, all of the electrons must
be in the lower state. There is only one way for all of them to be there (just like there is only
one way of getting 10 heads when we flip a coin 10 times). So, W =1, and S = kgIn1 = 0.
This is an example of the third law of thermodynamics, which states that the entropy of a
system in thermodynamic equilibrium tends to zero as the temperature tends to zero. On
the other hand, at extremely high temperatures kgT' is very large compared to the magnetic
splitting between the levels, and in the limit of the temperature tending to infinity, the
magnetic splitting might as well not be there. In this case we are back to our normal coin
tossing again - each state is equally likely - we expect half to be in the upper level, and half
in the lower level. We also know the number of ways this can happen, because we worked
it out for the coins (see the notes from Lecture 1). Convince yourself that this leads to an
entropy of Nkgln?2.

Thus far we have derived U, C., S from the partition function. The last parameter I
promised to derive was the magnetisation. There is rather an elegant way of doing this,
which will, T hope, make you realise the importance of the free energy, F', which we haven’t

yet used. From our knowledge of thermodynamics we know that for a magnetic system

dF = —MdB — SdT (15)



or dln Zs,
sl oo (5,

Convince yourself that this leads to

ueB )
M = Npupg tanh 1
i tanhs (52 (17)
In the limit of weak fields (i.e. B — 0) this yields Curie’s law of paramagnetism:
Nu%B
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Although you may not have thought of it in this way before, Curie’s law is actually the
equation of state of the magnetic system - it links the three variables (M, B, T) just like the
EOS of a gas in its usual form links (P, V,T). This is an important characteristic of the
free energy F' - it leads easily to the normal form of the equation of state of a system. Of
course, we will see later on how the partition function and F' lead to the ideal gas EOS - we
have not covered that so far because the form of the partition function for the gas is slightly

more involved - but don’t worry, we will get there soon!

I1I. EXAMPLE 2 - THE SIMPLE HARMONIC OSCILLATOR

The paramagnet was a very simple system, insomuch that it only had two levels. We
now turn our attention to a localised array (i.e. distinguishable) of 1-dimensional SHOs.

This time there are an infinite number of energy levels:

E,=(n+ %)hl/ (19)

It is trivial to show that the single particle partition function is now a geometric progression
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This time, I will just state the internal energy and then leave the derivation of the heat
capacity (see the problem sheet) as an exercise for both your enjoyment and edification.

Given the partition function above we find
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Notice the high temperature limit:-
U — NkgT as T — oo (22)

as we would expect by equipartition of energy. The specific heat of the system can be shown

to be:
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Figure 4: Heat capacity of an array of simple harmonic oscillators. Temperature in units of 4

- see text for definition.

Note the similarity with the form of the specific heat for the paramagnet (a - instead of
a +). It is plotted as a function of temperature below. Einstein used this model (extending
it to 3 dimensions) to show that the specific heat of a solid should tend to zero at low
temperatures. As you can see, his model predicts an exponentially decreasing heat capacity

as the temperature drops. Next year you will find out that Einstein’s model doesn’t work(!)



for a solid - the heat capacity actually falls off as 7°: Einstein’s assumption that all the
oscillators are independent is not correct - they are coupled together, and this makes the
difference to the low-temperature form of the heat capacity. On the other hand, the model is
a good description of the vibrational component of the specific heat of a diatomic molecule,

more of which later.

IV. SUMMARY OF LECTURE 3

1) For distinguishable particles, we can define a partition function for the system, Zy,
which is related to the single particle partition function by Zy = Z;ZX.

2) In terms of the partition function of the system, the thermodynamic variables become:
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F=—kgTlnZy (26)

The above arrangement is convenient, as we will show later on that it holds for indistin-
guishable particles as well (but in that case Zy is related to the single particle partition
function in a different way).

3) The single particle partition function for a spin -1/2 paramagnet is:

ueB
Zsp = 2 cosh (kBT) (27)

Using this we can work out the internal energy, specific heat, entropy, magnetisation etc.

For example, we found:
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and
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4) For a localised array of SHOs,
hv
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Again we can use this to work out all of the thermodynamics - for example the heat capacity

is:

cons (O) T g v (31)
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5) The most important point is that for any system, all we need to do is write down the

partition function then we know all of the thermodynamics.



