Unit 57 Nonlinear circuits and chaos

e Chaotic systems are characterized by a very sensitive dependence on
the initial conditions which causes initially adjacent system states to
diverge exponentially.

e A chaotic system must have at least three degrees of freedom if the
system state is never to repeat.

e Chaotic systems may start in a stable state but become periodic and
then chaotic as some parameter is varied by following a route to chaos.
A common route to chaos is associated with period doubling.

e Many chaotic systems enter a stable, nonrepeating chaotic orbit which
when projected onto a plane forms a pattern called a strange attractor.

We have examined linear systems in some detail since such linear systems
are the most commonly used in electronics. Even when the system becomes
mildly nonlinear, such as is shown in the example of saturation illustrated in
Figure 53.3, the system still remains stable and predictable. What we will
examine in this unit are the characteristics of nonlinear circuits which become
chaotic but calculable and are described under the heading of deterministic
chaos.
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Figure 57.1: Pinball machine.
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The concept of a deterministic chaotic system whose eventual state ex-
hibits a sensitive dependence of initial conditions is well illustrated by a
simple pinball mechanical system as shown in Figure 57.1.

A ball is launched at the array of pegs. It strikes the first and recoils at
an angle which depends strongly on the impact direction. It then impacts
on a second pin again having an angle of recoil depending on the line of
incidence. The final position of the ball is plotted after a fixed time. As time
increases the position of the ball becomes more and more sensitive to the
initial trajectory of the ball. The final position in a chaotic system becomes
an exponentially diverging function of the number of recoils off the pegs. Or
to put it differently, two initially adjacent trajectories will diverge to give an
eventual position which could be anywhere in the available space.

In the system in Figure 57.1, we can use only one peg and plot the position
of impact of the ball on the border as a function of the angle of launch. The
distribution of impact points is calculable. Put in a second peg and repeat
the calculation or the experiment. Some of the trajectories such as those
where the ball does not strike more than one peg are easily calculated. As
the number of pegs is increased the distribution of impact points becomes
more and more random or chaotic.

This example has illustrated one of the properties of chaotic systems, an
exponential divergence characterized by what is called a Lyanopov exponent.

Another feature of some chaotic systems is that the systems are initially
stable but as some parameter is varied they become chaotic. There is what
is called a route to chaos, the most common of which is the period doubling
route to chaos.

Consider a population of frogs living in a pond. In the simplest model,
the population x,.; in any one year depends on the population z, in the
previous year and the reproduction rate, r, so that:

Tpt1 =T X T

It is easily seen that the frog population is only stable and constant when
r=1. If r > 1 there is a population explosion and if » < 1 the frogs become
extinct.

However, frogs eat flies and if there are more frogs there will be less flies,
so we can visualize an improved model of the population dynamics in which
we describe the number of flies available for food by a term (1 — z,) where
2, = 0 corresponds to no frogs and x,, = 1 corresponds to the pond full of
frogs! Now let us change the population growth model and assume that the
number of frogs in the next generation depends on the reproduction rate, r,
the number of frogs, z,, and the available food (flies), described by (1 — z,,).



The number of frogs in the next generation is then given by the logistic
equation:
Tpr1 =7 X Ty X (1 — )

In order to examine the behaviour of the population we carry out a nu-
merical model of the system. This is an operation which is very frequently
performed in modelling chaotic systems. In dynamical systems it involves
numerical modelling of the differential equations which describe the system
and frequently requires significant computing power. In this case, however,
we will use a straightforward iteration to calculate a population from the
parameters and the previous year’s population.

The logistic equation x,.; = 7 X x, X (1 — z,,) should be programmed
into a computer and run for about 1000 iterations for various values of the
parameter r. When the last 20 values of x,, are printed to the screen and are
are examined it is found that for any initial nonzero value of xy and for a
range of values for 7, number sequences similar to those shown in the table
will obtained.

r= {10 1.5 |20]25] 3.0 3.5 | 3.59
1001 | 0 | 0.33]0.5|0.6|0.674 | 0.501 | 0.540
1002 || 0 |0.33]|0.5]0.6|0.659|0.874 | 0.882
1003 | 0 |0.33]0.5|0.6|0.674 | 0.383 | 0.370
1004 || 0 | 0.33]0.5|0.6|0.659 | 0.826 | 0.827
1005 | 0 |0.33]0.5|0.6|0.674 | 0.501 | 0.506
1006 | 0 | 0.33 0.5 0.6 |0.659 | 0.874 | 0.887
1007 | 0 | 0.33 0.5 0.6 | 0.674 | 0.383 | 0.354
1008 | 0 | 0.33]10.5]0.60.659 | 0.826 | 0.812
1009 || 0 | 0.33]0.5|0.6|0.674 | 0.501 | 0.540
1010 || 0 | 0.33 0.5 0.6 | 0.659 | 0.874 | 0.882

This program is run for values of r extending from 0 to 4 and the resulting
values of x are plotted on a graph as shown in Figure 57.2. From the table
there is only one value, x = 0.6, for r = 2.5 but there are four values of =
for r = 3.5. At each bifurcation point on the graph the number of iterations
which are required before the pattern repeats increases by a factor of 2 which
is why this is named the ‘Period doubling route to chaos’. For values of r
greater than 4 the pattern does not repeat and the succession of numbers is
termed chaotic. This sequence of numbers for r = 4 is not a set of random
numbers, however, because each number is computed or determined from the
previous number and the system is therefore said to exhibit deterministic
chaos.

So we now have a system which may be stable for a certain range of a
parameter but which then becomes more and more unstable along a period



Figure 57.2: Period doubling route to chaos.

doubling route as the parameter is varied away from the stable region. An
important distinction should be made at this point. In an electronic system
distortion is characterized by higher Fourier harmonics appearing in the out-
put but this is not chaotic behaviour. Period doubling is characterized by
subharmonics appearing in the output and this is a signature of the immi-
nence of chaos.

Linear systems do not exhibit chaotic behaviour. Nonlinear systems
usually introduce higher frequency Fourier components and occasionally ex-
hibit chaotic behaviour but, until recently, systems which exhibit chaotic be-
haviour were either not understood or not recognized and therefore tended
not to be discussed in textbooks. Any known but unrecognized cases of
chaotic behaviour were regarded as bad engineering and avoided. Now that
we can recognize, describe and understand the phenomenon of chaos there is
a trend towards utilizing chaotic systems for useful purposes.

A number of electronic circuits have been proposed as examples of circuits
which exhibit chaotic behaviour but in some cases, dating from the early days
of the subject, electronic reality did not correspond to the mathematical
models which purported to show and explain the chaotic behaviour.

We will restrict our discussion of chaotic circuits to one of the better
characterized chaotic circuits which was initially developed by Leon Chua
and which is now named after him.

In this treatment of chaotic electronic systems we take a simple system
and attempt to follow through the analysis of the system from the viewpoint
of electronics and not from the more abstract mathematical viewpoint. This
approach to understanding the simpler case should then be applicable, by
extension, to more complex chaotic electronic systems. Chaotic systems are
nonlinear and the usual approach of using differential equations in the anal-
ysis will not work so numerical methods are employed. This leads to a loss
of intuitive understanding of the circuits owing to the intervening layer of
programming and modelling.

In carrying out the analysis, the principle of Occam’s Razor will be ap-
plied. While the principle is ascribed to William of Occam, it does not



actually appear stated in his works. It is that ‘Entities are not to be multi-
plied without necessity’ or in more modern phrasing ‘Keep it simple’. Un-
fortunately owing to the complex nature of chaotic systems, the explanations
are not always simple but we will endeavour to keep the flow of the argument
as straightforward as possible.

The fundamental unit used in this circuit is a device called a Chua diode.
It is essentially a nonlinear negative resistance. A passive negative resistance
is impossible since a negative resistance is essentially a device which outputs
electrical power, so there must be an energy source somewhere in the system.
In our case the energy source is the power supply for the op-amp. However,
we have already met a negative resistance when we discussed the photodiode.
The lower right hand quadrant of the -V characteristic for a photodiode
shown again in Figure 57.3 is a region where the voltage across the device
is positive but the current is negative thus giving a negative resistance. The
light energy falling on the photodiode is being converted into electrical energy
and is driving the external circuit. By a similar argument a battery or a
dynamo can also be considered as a negative resistance device.
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Figure 57.3: Photodiode characteristic.

A circuit which synthesizes a Chua diode is shown in Figure 57.4. We
start with two diodes having resistors in series with them as shown in Figure
57.4 (a). The diodes do not conduct until the knee voltage of 0.7V is reached
and after that, the current is limited by the 3.3 k() series resistor so the I-V
characteristic is as shown.

The second part of the circuit is shown in Figure 57.4 (b). In analyzing the
operation of this circuit we use the rule that the voltage difference between
the input terminals of the op-amp is zero. The voltage across the 1.1k{2
resistor is therefore equal to the voltage at the top of the circuit. The output
voltage from the op-amp must then be sufficient to drive current through the
300 €2 and 1.1 k€2 in series to give this voltage. If a voltage of 2V is present at
the top of the circuit then the op-amp output is 1:28£3%0 » 9 — 2 54 V. This

1100
op-amp output is also applied to the upper 300 €2 resistor and gives a current



of 22252 = —1.8mA in the input corresponding to an input resistance of
—1.1k€.
Circuit | -V Characteristic
° 1ImA T

/ }
3.3kQ /\ 2V

° (@) _
R =33kQ
300Q
1mA T
300Q
/ |
2V
1.1kQ Ry=-11k Q
o (b)
1mA T
\v4
R=-1.65k Q |
v

§ R=-11k Q
° ()

Figure 57.4: The operation of Chua’s diode.

When these two circuits are placed in parallel as shown in Figure 57.4 (c)
the central region has a resistance of —1.1k(2 but the outer regions have a
resistance of —1.65k(2 corresponding to +3.3k(2 in parallel with —1.1 k2.

In combining the characteristics for each of the circuit segments it should
be noted that since the two circuits are in parallel, we must add the currents
at each voltage to get a resultant. When you are experimenting with this
circuit, you can observe these characteristics by using a curve tracer which



applies an alternating drive voltage to a circuit and measures the resulting
current. The voltage is displayed on an oscilloscope X axis and the current
is displayed on the Y axis as in the I-V characteristics. Some oscilloscopes
have a component test facility which does the same thing but with less control
over the voltages which can be applied. Alternatively you could use a circuit
similar to that in Figure 17.4 where a function generator is used to drive the
circuit (in place of R) and the capacitor is replaced by a low valued resistor
(10 Q) which is used to sense the current. The oscilloscope is then used in
XY mode.

Now put a variable resistance and a parallel LC' in series with this Chua
diode circuit as shown in Figure 57.5. The variable resistance should be
adjusted until oscillation is obtained. If the resistance of the variable resistor
is then measured (out of circuit) it will be found that the value which gives
stable oscillation is between the resistance of the two segments of the Chua
diode (1.1kQ2 and 1.65kS2 in this example). The oscillation is driven by the
negative damping effect of the negative resistance of the Chua diode. The
amplitude does not increase indefinitely because the series resistance of the
Chua diode and the Ry becomes positive for larger amplitudes of oscillation
thus limiting the amplitude.
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Figure 57.5: Chua’s oscillator circuit.

This circuit oscillates with an approximately sinusoidal waveform at a
frequency given by f = Qm}E as shown in the oscilloscope tracing in Figure
57.6 of the waveforms at points X and Y.

If a capacitor is added to the circuit between point X and ground to
give the circuit shown in Figure 57.7, then a circuit is formed which exhibits
chaotic oscillation. In the circuit in Figure 57.7 we have replaced the op-amp
and two diodes forming the Chua diode by the boxed resistor symbol which

is now the more usual representation of the Chua diode. This is appropriate
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Figure 57.6: Storage oscilloscope printout of Chua oscillator waveforms.

since the nonlinear negative resistance diode is now available as an integrated
circuit component.
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Figure 57.7: Chua’s chaotic oscillator.

After the variable resistor Ry has been adjusted with some delicacy you
should get the oscilloscope waveforms similar to those shown in Figure 57.8
with the signals being taken from points X and Y in the circuit. If you fail
to obtain these waveforms then you may have to substitute slightly different
values for some of the components. It has been found that the inductor is a
critical component. If the resistance of the inductor is too large the circuit
will not operate. Also you might try substituting slightly different values for
the 1.1k€2 shown in Figure 57.5. The difficulty is that the operation of this
circuit depends on differences of about 1% between two resistors which are
only specified to a 5% tolerance. One solution is to use a variable resistor
instead of the 1.1k(2 resistor and trim the circuit until it operates.
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Figure 57.8: Voltage waveforms measured at points X and Y of Figure 57.7.

Another form of presentation of the performance of a chaotic oscillator
circuit is shown in Figure 57.9 where the oscilloscope is operated in XY mode
with the same signals as those in Figure 57.8. This representation shows what
is called the double scroll chaotic attractor for the circuit.

We will now present an explanation in electronic terms of the operation of
the chaotic oscillator circuit. A full mathematical treatment of the operation
is available in the literature (see, for instance, Kennedy, M.P., IEEE Trans-
actions on Circuits and Systems, 40, (10), 640, 1993) but the mathematical
model is not necessarily the best way of obtaining a first understanding of
the operation of the circuit.

This explanation is presented essentially as a superposition of three dis-
tinct mechanisms which operate in the circuit.

First consider a potential divider of Ry and Ry where Ry is the Chua
diode nonlinear negative resistance as shown in Figure 57.4 (c).

If a voltage is applied to this potential divider, as in Figure 57.10, the
output voltage will be:

Ry
Vour = 5———5— X
¢ Ry + Ry

But Ry is negative so when Ry is slightly less than the magnitude of Ry
we will obtain an output voltage from the potential divider which is larger
than the input voltage. The voltage at point Y across the LC' in Figure 57.7
and shown in the lower trace in Figure 57.8 can be considered as the input to
the potential divider and the voltage at point X in Figure 57.7, shown as the

Vin



Figure 57.10: Negative resistance amplifier.

upper trace in Figure 57.8, can be considered as the output. Examination
of the two traces in Figure 57.8 does show that there is an amplification and
that the output of the potential divider is indeed greater than the input. The
sensitivity settings of the oscilloscope are shown at the top left of the display.

Next, consider the series circuit of the Ry and the Ry of the Chua diode.
Since these are in series we combine the -V characteristic curves by adding
the voltages horizontally for each current to give the resulting characteristic
as shown in Figure 57.11.

This characteristic has an unstable equilibrium point at the origin and if
an LC'is connected across the input, the negative resistance of the /-V char-
acteristic causes oscillations to grow in the LC' owing to the negative damping
of the characteristic. This then gives a zero DC bias and an exponentially
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Figure 57.11: -V characteristics for series Ry and Ry.

growing oscillation as shown in the lower trace of Figure 57.8.

Thirdly we consider the voltage across C; at point X in the circuit as
shown in Figure 57.12. In this case we analyze in terms of the Ry and Ry
in parallel and we get the resultant characteristic as shown in Figure 57.12
by adding the currents vertically for each voltage.

This characteristic gives two stable operating points at P; and P, with
an unstable region in between at the origin.

When these three mechanisms are superimposed we see that the voltage
across this parallel combination is driven by the amplified output oscillation
of the potential divider and that the circuit jumps from one operating point
to the other (P, to P, or P, to Pp) as soon as the voltage at X crosses the
corners of the characteristic. The energy which has been built up in the
oscillations in the LC' is transferred to the storage capacitor C; and the os-
cillations in the LC have to start to grow from zero again. This mechanism
gives the steps in the waveform across the capacitor C as shown in the up-
per trace in Figure 57.8 which also has the amplified exponentially growing
oscillations superimposed on the steps.

It can also be seen that the value of the capacitance, C', is critical. It
must be large enough to store the energy built up in the oscillation in the
LC circuit but it must not be so large as to smooth totally the output oscil-
lation across C; and the potential divider. A value of C; such that 9C; = Cy
usually gives satisfactory operation but you should try other values.
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Figure 57.12: I-V characteristics for parallel Ry and Ry.

In the discussion of the logistic function we showed that the equation
Tni1 = 7 X Ty X (1 — x,) shows a period doubling route to chaos as the
parameter r is increased. If the Ry in the Chua circuit is varied slowly
and if the circuit is biased towards one of the basins of oscillation by using,
say, 5.6k and 3.3k(2 resistors in series with the diodes in Figure 57.4 (a)
then a period doubling sequence for the oscillations can be observed and is
manifested by a progression from a single closed loop to a double loop to a
four fold closed loop when the display is set to XY mode as in Figure 57.9.

In the sinusoidal oscillators which were described in Unit 53, the ampli-
tude was stabilized by the use of a nonlinear feedback component such as
a miniature bulb or a thermistor. This gave a stable loop gain of 1 and an
oscillator which operated in the linear region. This can be compared with
the controlled or limited amplitude oscillations which are obtained with the
Chua circuit. In the case of the Chua oscillator, Figures 57.5 and 57.6, the
amplitude stabilizes and the value of the voltage at some future time is cal-
culable from V' = Vjsin(27 ft + ¢). In the case of the Chua chaotic oscillator,
the loop gain is greater than 1 but the oscillation is prevented from growing
indefinitely by the switching action in the circuit which kills a large oscil-
lation and restarts the oscillation. The result is that the voltage at some
future time is calculable and deterministic but is not predictable owing to
the sensitivity of the system to initial conditions. This is a characteristic
feature of chaotic systems.

In naturally occurring systems, the stably, uniformly oscillating system
is very rare but systems showing chaotic oscillation similar to the Chua



oscillator occur frequently. A leaf fluttering in the wind, a wave at sea,
turbulent eddies in the wake of a ship and the beating of a heart are some
examples of chaotic systems.

57.1 Problems

57.1 Sketch the I-V characteristic for the circuit in Figure 57.4 (b) if the
300 €2 resistors are replaced by 22 k() resistors and the 1.1k() resistor
is replaced by a 3.3 k) resistor.

57.2 A pendulum mass is suspended from the top of a rod which is hinged
at the bottom at H and is constrained loosely between two limits at
the top as shown in Figure 57.13. The pendulum is driven by a pulsed
electromagnetic drive which causes the oscillation amplitude to increase
with time. Describe the motion of the pendulum bob as a function of
time.

Limit 1 |: Limit 2

Figure 57.13: Resonantly driven sloppy pendulum.

57.3 Design an electronic circuit which will detect the proximity of the pen-
dulum bob in Problem 57.2 and which will apply a pulse to an electro-
magnet which is timed so as to increase the amplitude of oscillation of
the pendulum.

57.4 A gyrator is an electronic circuit which uses op-amps, resistors and
capacitors to simulate an inductor. Figure 57.14 shows the circuit for
a Riordan gyrator for which the inductance is given by:
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tZ, =73=27,= 75 =1k and Z, is a capacitor of value C = 0.01 uF
having an impedance Z, = -1~ calculate the inductance simulated by

JjwC?
the gyrator.
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Figure 57.14: Riordan’s gyrator simulating an inductance.

57.5 Use the two rules for op-amp operation to derive the relationship:

7
Z, = 14375
YAV

quoted for the gyrator circuit in Problem 57.4.

57.6 Discuss the characteristics of the gyrator, using the circuit in Fig-
ure 57.14, which would result from setting Z; = Z3 = Z, = 1k{),
Zy = 0.01 uF and using a negative resistor circuit for Z; of value
Zs = —1.5kA.

57.7 Draw a circuit for a Chua chaotic oscillator which uses a Riordan gy-
rator in place of the inductor. Calculate suitable values for the compo-
nents.



