Unit 18 Fourier series

e Any repetitive waveform can be synthesized from the sum of sinusoidal
waves of appropriate amplitude and phase.

e The frequencies of the Fourier components are the fundamental fre-
quency and integer multiples of this frequency.

e The sharper the corners in the original waveform, the greater will be
the amplitudes of the higher frequency Fourier components of the wave-
form.

e The response of any filter to a repetitive waveform is obtained by sum-
ming the responses for each of the Fourier components of the input
waveform.

Analysis of waveforms

As this is an introductory course, we will discuss the Fourier analysis of
waveforms in graphical terms rather than use the full mathematical treatment
which is readily available in any text on Fourier series.

Take a sinusoidal wave of fundamental frequency, f;, and amplitude 1
as shown in Figure 18.1 (a). Add to this waveform a sinusoid of frequency
3 fo, the third harmonic, which has an amplitude of 33% of the fundamental.
This is shown in Figure 18.1 (b) with the sum of the two waveforms shown in
Figure 18.1 (c). Add to this sum a sinusoid of frequency 5f, and amplitude
20% of the fundamental to get Figures 18.1 (d) and (e). Visualize this process
continuing for all of the odd harmonics of fy given by f = (2n + 1) f, and
having amplitudes ﬁ, where n is an integer, eventually leading to the
composite synthesized square waveform in Figure 18.1 (f).

As higher harmonics are added in, the corners of the square waveform are
sharpened up as shown in Figures 18.1 (a), (c) and (e).

Thus we can see that a square waveform of period 7' can be considered as
the sum of a sinusoidal waveform of fundamental frequency f, = % combined
with sinusoids at the odd harmonics of this fundamental frequency.

In our example we have taken the phase shifts of the harmonics to be
zero, that is all of the harmonics are zero at times 0, %, T, %, ... If the
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Figure 18.1: Construction of square waveform from Fourier components.

phase of the harmonics is not zero then the waveform synthesized can be
quite different even though the amplitudes of the harmonics are unchanged.

Synthesis of filter response
In order to determine the effect of a filter on an arbitrary repetitive waveform,
follow the following procedure:

e Obtain the Fourier spectrum of the input waveform.
e Calculate the effect of the filter on each of the Fourier components.

e Combine the modified components to obtain the output waveform.

This procedure can be carried out numerically but often the following
graphical method will permit a rapid estimation of the output waveform to
be obtained without a long calculation.

Plot the log of the amplitude of each of the Fourier components against
the log of the frequency to get a diagram such as that shown in Figure 18.2
(a) which represents the frequency spectrum of the square wave. The small
circles indicate the amplitudes of the Fourier component at that frequency.
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Figure 18.2: (a) Fourier spectrum of square wave (b) Filter response.

If the waveform having this frequency spectrum is passed through a filter
with a corner frequency at 2kHz which has a response curve or Bode plot
such as that in Figure 18.2 (b) then the lower frequency components will
emerge unchanged but the higher frequencies will be attenuated resulting in
the spectrum shown in Figure 18.3.

At each frequency we have multiplied the amplitude of the Fourier com-
ponent at that frequency by the magnitude of the attenuation of the filter to
get the magnitude of the output. This is the powerful feature of the Bode
plot approach. Since the log of the amplitude is plotted, all we have to do
is, at each frequency, to add the logs of the signal and filter responses to get
the log of the filter output and thence a log spectrum of the output.

This operation is most easily carried out if the amplitude of the input
spectral components and the response curves for the filter(s) are all plotted
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on a single graph. The spectrum of the output is then obtained by a graph-
ical adding of the signals at each frequency as is shown in Figure 18.3 in
which the amplitudes of the Fourier components of the output are indicated
by x. For example, at a frequency of 3kHz or at 3.48 on the log f axis, the
filter response is —4 dB and the amplitude of the Fourier component of the
square wave is —9dB which gives the output:

—9dB -4dB = —-13dB

as indicated by the arrows in Figure 18.3. Remember that the amplitudes
are smaller than the reference and therefore the dB values are negative.
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Figure 18.3: Each Fourier component is attenuated by the filter response at
that frequency.

This example which we have just discussed represents what happens when
a square wave is passed through an RC' low pass filter which has a corner
frequency which is close to the fundamental frequency of the square wave.
The circuit and input and output waveforms are shown in Figure 18.4 and it
can be seen that the higher frequency harmonics associated with the sharp
edges of the square waveform have been attenuated by the filter to leave a
much smoother output waveform.

In our discussion, we have not mentioned the phase shifts which occur in
the filter and how they may affect the output waveform. If the filter response
is such that the phase delay in the filter is constant over the pass band of
the filter then the distortion of the waveform due to phase changes will be
minimized.

Also the sharper the corners in the original waveform, the greater will be
the amplitudes of the higher frequency components of the waveform.
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Figure 18.4: Distortion of a square wave by a low pass filter.

18.1 Problems

18.1 Estimate by graphical summation the relative amplitudes of the first
two Fourier components of the triangular waveform shown in Figure
18.5.
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Figure 18.5: Triangular waveform for Problem 18.1.

18.2 Estimate by graphical summation the relative amplitudes and phases
of the first four components of the sawtooth waveform shown in Figure
18.6.
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Figure 18.6: Sawtooth waveform for Problem 18.2.

18.3 Sketch a circuit for a C'R high pass filter with a corner frequency of
2kHz. A square wave of fundamental frequency 1 kHz is passed through
this filter. Sketch the spectrum of the square wave, the response of the
filter and the spectrum of the output waveform. Sketch the shape of
the distorted output waveform.

18.4 A square waveform of fundamental frequency 20 kHz is passed through
a band pass filter which has a centre frequency of 100 kHz and a 3dB
bandwidth of 15kHz. Which Fourier components of the square wave-
form will be passed through the band pass filter? Sketch the output
voltage waveform.



