## Unit 15 Generalized potential divider

• Resistive or reactive components used in potential dividers give:

$$V_{out} = \frac{Z_2}{Z_1 + Z_2} V_{in}$$

• When the term  $\frac{Z_2}{Z_1+Z_2}$  is put into the form  $|A|e^{j\phi}$  then |A| is the attenuation of the potential divider and  $\phi$  is the phase shift.

There are two results from complex algebra which we will use extensively and which you may need to follow up in your mathematics textbook.

When a complex number, c, is in the form c = a + jb, the modulus and the phase angle for c and  $\frac{1}{c}$  are given by:

$$|c| = |a+jb| = \sqrt{a^2 + b^2}$$
 and  $\tan \phi = \frac{b}{a}$ 

$$\left|\frac{1}{c}\right| = \left|\frac{1}{a+jb}\right| = \frac{1}{\sqrt{a^2+b^2}}$$
 and  $\tan \phi = \frac{-b}{a}$ 

The resistors in the potential divider discussed in Unit 4 can be replaced by any combination of resistors, capacitors or inductors in series or parallel. A resultant impedance can then be calculated for each half of the potential divider. The current in each of the two impedances is given by  $\frac{V_{in}}{Z_1+Z_2}$ . This current flowing through  $Z_2$  gives an output voltage  $Z_2I$ .

The ratio of output to input voltage is then:

$$\frac{V_{out}}{V_{in}} = \frac{Z_2}{Z_1 + Z_2}$$

but since  $Z_1$  and  $Z_2$  are complex then  $\frac{Z_2}{Z_1+Z_2}$  is usually also complex and has a magnitude less than 1.

If we express  $\frac{Z_2}{Z_1+Z_2}$  in the form  $|A| e^{j\phi}$  then |A| gives the attenuation of the potential divider and  $\phi$  gives the phase shift in radians.



Figure 15.1: Generalized potential divider.

## 15.1 Example

15.1 Calculate the attenuation and phase shift in the RC network in Figure 15.2 where  $R = 2.2 \text{ k}\Omega$ ,  $C = 0.1 \mu\text{F}$  and the frequency is 1.5 kHz.



Figure 15.2: Example 15.1.

The network response is given by:

$$\begin{array}{rcl} \frac{V_{out}}{V_{in}} & = & \frac{Z_2}{Z_1 + Z_2} \\ & = & \frac{\frac{1}{j2\pi fC}}{R + \frac{1}{j2\pi fC}} \\ & = & \frac{1}{1 + j2\pi fCR} \\ & = & -2\pi fCR \\ & = & -2\pi 1500 \times 0.1 \times 10^{-6} \times 2200 \\ & = & -2.07 \\ & \text{So that } \phi = & \tan^{-1}(-2.07) \\ & = & -1.12 \, \text{rad or } -64.3^{\circ} \\ & = & \frac{1}{\sqrt{1 + \tan^2 \phi}} = \frac{1}{\sqrt{1 + 2.07^2}} \\ & = & 0.435 = 20 \log 0.435 \, \text{dB} = -7.23 \, \text{dB} \end{array}$$

If this circuit is constructed and the input and output waveforms are displayed on an oscilloscope then a trace similar to that in Figure 15.3 should be obtained.



Figure 15.3: Input and output voltage waveforms for Example 15.1.

In the calculations we obtained a phase shift of -1.12 radians. In the oscilloscope diagram it can be seen that the output waveform is displaced to the right by 1.12 radians or  $64^{\circ}$  relative to the input voltage waveform. So we obtain the useful rule that:

- If the phase shift is positive then the output waveform is shifted to the left and is said to lead the input waveform.
- If the phase shift is negative then the output waveform is shifted to the right and is said to lag the input waveform.

## 15.2 Problems

- 15.1 Write down the expression for the output voltage waveform in Example 15.1 shown in Figure 15.3.
- 15.2 Calculate the attenuation and phase shift for the RC circuit shown in Figure 15.4 when  $f = 500\,\mathrm{Hz}$ ,  $C = 22\,\mathrm{nF}$  and  $R = 10\,\mathrm{k}\Omega$ . Sketch the input and output voltage waveforms showing the amplitude and phase of the signals. Assume that the input signal is  $1\mathrm{V}_{\mathrm{pp}}$ .



Figure 15.4: Problem 15.2.

15.3 Calculate the attenuation and phase shift for the CR circuit shown in Figure 15.5 when  $f=1.5\,\mathrm{kHz},\,C=0.1\,\mu\mathrm{F}$  and  $R=1.2\,\mathrm{k}\Omega$ . Sketch the input and output voltage waveforms showing the amplitude and phase of the signals. Assume that the input signal is of amplitude 1 V.



Figure 15.5: Problem 15.3.

15.4 Calculate the attenuation and phase shift for the LR circuit shown in Figure 15.6 when  $f=7\,\mathrm{kHz},\ L=10\,\mathrm{mH}$  and  $R=680\,\Omega$ . Sketch the input and output voltage waveforms showing the amplitude and phase of the signals. Assume that the input signal is  $1\,\mathrm{V}_{\mathrm{pp}}$ .



Figure 15.6: Problem 15.4.

15.5 Calculate the attenuation and phase shift for the RL circuit shown in Figure 15.7 when  $f=60\,\mathrm{kHz},\,L=1\,\mathrm{mH}$  and  $R=470\,\Omega$ . Sketch the input and output voltage waveforms showing the amplitude and phase of the signals. Assume that the input signal is  $1\,\mathrm{V}_{\mathrm{pp}}$ .



Figure 15.7: Problem 15.5.

15.6 Calculate the frequency for which the attenuation is 3dB for the circuit in Figure 15.8. Calculate the phase shift in degrees at this frequency.



Figure 15.8: Problem 15.6.

15.7 Show that the bridge circuit in Figure 15.9 will be in balance, that is  $V_A = V_B$ , when  $R_X = \frac{R_3 \times R_2}{R_1}$ .



Figure 15.9: Problem 15.7.

15.8 Show that the Simple bridge in Figure 15.10 will be in balance when:

$$R_X = \frac{R_2 \times R_3}{R_1}$$
 and  $C_X = \frac{R_1}{R_3} \times C_2$ 

Does the balance depend on the frequency of the voltage across the bridge? Note that the real and complex parts of the impedance equation must balance separately.



Figure 15.10: Problem 15.8.