Reference sheet: PS203

$$V = I \times R$$

$$R_{series} = R_1 + R_2 + R_3 + \cdots$$

$$\frac{1}{R_{par allel}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots$$

$$C_{par allel} = C_1 + C_2 + C_3 + \cdots$$

$$Power P = V \times I = I^2 \times R = \frac{V^2}{R} \text{ watts}$$

$$Power ratio = 10 \log \left(\frac{P_{out}}{P_{in}}\right) = 20 \log \left(\frac{V_{out}}{V_{in}}\right)$$

$$\omega = 2\pi f$$

$$T = \frac{1}{f}$$

$$V = V_0 \sin(2\pi f t + \phi)$$

$$I = I_0 \sin(2\pi f t + \phi)$$

$$I = I_0 \sin(2\pi f t + \phi)$$

$$V_{Amplitude} = 1.4 \times V_{RMS}$$

$$V_{Peak-to-Peak} = 2 \times V_{Amplitude}$$

$$Air core L(nH) = \frac{N^2 d^2}{0.46d + 1.02b}$$

$$Ferrite core L(nH) = N^2 A_L$$

$$Z_R = R \text{ for resistance}$$

$$Z_C = \frac{1}{j\omega C} \text{ for capacitor}$$

$$Z_L = j\omega L \text{ for induct or}$$

$$V = ZI$$

$$= |Z| e^{j\phi} I$$

$$\text{or } V_0 e^{j\omega t} = |Z| I_0 e^{j(\omega t + \phi)}$$

$$Z = R + i Y$$

where R is the resistance, X is the reactance. Generalized potential divider:

$$\frac{V_{out}}{V_{in}} = \frac{Z_2}{Z_1 + Z_2} = |A| e^{j \phi}$$

Then |A| = attenuation and $\phi =$ phase shift

$$|c| = |a+jb| = \sqrt{a^2 + b^2} \quad \tan \phi = \frac{b}{a}$$

$$\left|\frac{1}{c}\right| = \left|\frac{1}{a+jb}\right| = \frac{1}{\sqrt{a^2 + b^2}} \quad \tan \phi = \frac{-b}{a}$$

$$f_{corner} = \frac{1}{2\pi CR}$$
 or $\frac{R}{2\pi L}$

Thé venin's theorem $R_{o\,u\,t} = rac{V_{o\,u\,t} \ o_{p\,en} \ ci\,r\,cu\,it}{I_{ou\,t} \ short \ circuit}$

Principle of superposition: Replace voltage sources by short circuits and current sources by open circuits.

Semiconductor equation:

$$n \times p = n_i^2 = \text{constant for constant } T$$

Current through a pn diode junction is:

$$I = I_0 \left(\exp\left(\frac{eV}{kT}\right) - 1 \right)$$

$$\approx I_0 \exp\left(\frac{V}{25 \text{ mV}}\right)$$

$$\frac{kT}{e} = 25 \text{ mV}$$

Voltage across diode is:

$$V = V_k + I \times R_B$$

where $V_k = 0.7 \,\mathrm{V}$ for Si, $0.3 \,\mathrm{V}$ for Ge.

$$R_{dyn} = \frac{dV}{dI} = \frac{25 \text{ mV}}{I}$$

Ripple voltage of rectified and smoothed AC is:

$$\frac{I_{out}}{2 \times f \times C}$$

Zener diode conducts in reverse bias when the voltage is greater than the Zener voltage for the diode.

For a bipolar transistor:

$$\begin{array}{rcl} I_C & = & \beta \times I_B \\ I_C & \approx & I_E \\ V_{BE} & \approx & 0.7 \mathrm{V} \end{array}$$

Basic equation for transistor bias circuits is:

Voltage supply = Sum of individual voltage drops

Common emitter amplifier amplification:

$$A_{V} = -\frac{I_{E}}{25 \text{ mV}} \times R_{C}$$

$$R_{in} = \beta \times \frac{25 \text{ mV}}{I_{E}}$$

A JFET is specified by:

$$egin{array}{lll} V_{GS(off)} &=& {
m Gate\ to\ source\ cutoff\ Voltage} \ I_{DSS} &=& {
m Drain\ saturation\ current} \ g_m &=& rac{dI_D}{dV_{GS}} = {
m Mut\ ual\ conductance} \ I_D &=& I_{DSS} \left(1 - rac{V_{GS}}{V_{GS(off)}}
ight)^2 \end{array}$$

An enhancement mode MOSFET is specified by:

$$I_D = k(V_{GS} - V_{GS(th)})^2$$

For a JFET common source amplifier select:

- $R_S = \left| \frac{V_{GS(off)}}{I_{DSS}} \right|$
- Then $V_{GS} \approx 0.4 \times V_{GS(off)}$
- and $I_D \approx 0.4 \times I_{DSS}$
- $\bullet \ A_V = -g_m \times R_D$

$$g_m = \frac{dI_D}{dV_{GS}} = -2\frac{I_{DSS}}{V_{GS(off)}} \left(1 - \frac{V_{GS}}{V_{GS(off)}}\right)$$

For op-amps used in linear region:

- Rule 1. The voltage difference between the inverting and noninverting inputs is approximately zero.
- Rule 2. No current flows into the input terminals of the op-amp.
- The gain of an inverting amplifier is:

$$A_V = -\frac{R_f}{R_{in}}$$

• The gain of a noninverting amplifier is:

$$A_V = 1 + \frac{R_1}{R_2}$$

- $A_V = \frac{1}{\beta} = \frac{1}{\text{Feed back fract io n}}$
- The output from an inverting adder is:

$$V_{out} = -R_f \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} + \dots \right)$$

• Output of current to voltage converter is:

$$V_{out} = -I \times R_f$$

• A bridge is in balance when:

$$\frac{R_1}{R_2} = \frac{R_3}{R_4}$$

• For a differential amplifier:

$$V_{out} = \frac{R_2}{R_1} \times (V_2 - V_1)$$

• For a differentiator:

$$V_{out} = -CR_f \frac{dV_{in}}{dt}$$

• For an integrator:

$$V_{out} = -\frac{1}{CR} \int V_{in} dt$$

If a component characteristic is I = f(V) then:

• Putting the component in place of the input resist or of an inverting amplifier gives the forward function:

$$V_{out} = -R \times f(V_{in})$$

• Putting the component in place of the feedback resistor of an inverting amplifier gives the inverse function:

$$V_{out} = -f^{-1} \left(\frac{V_{in}}{R} \right)$$

Frequency response of a 741 op-amp:

- Has a corner at 10 Hz and 100 dB.
- \bullet Open loop gain decreases by 20 dB per decade above 10 Hz

Noise in bandwidth B has units of:

Volts per
$$\sqrt{\text{Hz}}$$
 or Amps per $\sqrt{\text{Hz}}$

• Thermal noise from a resistor, R, at temperature T within a bandwidth B is:

$$V_{noise} = \sqrt{4kTRB}$$

• The shot noise is:

$$I_{noise} = \sqrt{2eIB}$$

• Flicker noise spectrum varies as

$$\frac{1}{f} = \frac{1}{\text{Frequency}}$$

For a 555 Timer IC:

$$T_1 = 0.7(R_A + R_B)C$$
 and $T_2 = 0.7R_BC$

Sinusoidal voltage waveforms are obtained by using an amplifier with:

- Positive feedback,
- Loop gain of 1
- Frequency selective feedback network.

An R-2R ladder gives an output:

$$V_{out} = -R_f \frac{V_{ref}}{4R} \left(S_0 + \frac{S_1}{2} + \frac{S_2}{4} + \frac{S_3}{8} + \ldots \right)$$