

This impedance diagram represents

- 1. A resistor in series with a capacitor
- 2. A resistor in series with an inductor
- 3. An inductor in series with a capacitor

In this impedance diagram

- 1. The voltage leads the current
- 2. The voltage is in phase with the current
- 3. The voltage lags the current

This impedance diagram shows that the voltage and the current are related by

- 1. $V=|Z|\,e^{j\phi}I$ and ϕ is positive
- 2. $V=|Z|\,e^{j\phi}I$ and ϕ is negative

This impedance diagram represents

- 1. A resistor in series with a capacitor
- 2. A resistor in series with an inductor
- 3. An inductor in series with a capacitor

In this impedance diagram

- 1. The voltage leads the current
- 2. The voltage is in phase with the current
- 3. The voltage lags the current

This impedance diagram shows that the voltage and the current are related by

- 1. $V=|Z|\,e^{j\phi}I$ and ϕ is positive
- 2. $V=|Z|\,e^{j\phi}I$ and ϕ is negative

This complex impedance diagram could represent

- 1. A resistor
- 2. A resistor in series with a capacitor
- 3. A resistor in series with an inductor
- 4. A resistor, a capacitor and an inductor in series

The phase angle, ϕ , for this complex impedance diagram is

- 1. Positive
- 2. Zero
- 3. Negative