• Charging RC circuit

$$V_C = V_{sup} \left( 1 - e^{\frac{-t}{RC}} \right)$$

ullet Discharging RC circuit

$$V_C = V_{sup}e^{rac{-t}{RC}}$$

 $\bullet$  Charge up time or discharge time between  $\frac{1}{3}V_{sup}$  and  $\frac{2}{3}V_{sup}$  is

$$T = 0.7 RC$$

• Time to charge from 0V to  $\frac{2}{3}V_{sup}$  is

$$T = 1.1RC$$

• Time intervals for a 555 Timer IC are

$$T_1 = 0.7(R_A + R_B)C$$
 and  $T_2 = 0.7R_B$ 



RC charging curve.

$$V_{sup} - V_C$$
 across  $R$ .

 $V_{sup}-V_C$  across R. Then  $I=\frac{dQ}{dt}=\frac{V_{sup}-V_C}{R}.$  Charge on capacitor is  $Q = CV_C$ 

After differentiation becomes  $\frac{dQ}{dt} = C\frac{dV_C}{dt}$ . Equate these two expressions for the current to get

$$RC\frac{dV_C}{dt} = V_{sup} - V_C$$

Solution is

$$V_C = V_{sup} \left( 1 - e^{\frac{-t}{RC}} \right)$$

where RC is called the time constant.



RC charging curve.

At the time T=RC, the calculated value of the  $V_C$  is  $0.63V_{sup}$ .

The output has made 63% of its total change at time T=RC.

This 63% response is used in instrumentation.

Thermometer time constants.

Wait 3 time constants for valid reading.



RC discharging curve. Close switch at t=0Set up differential equation

$$V_C = V_{sup} e^{\frac{-t}{RC}}$$

Define  $T_L$  is time for capacitor to charge from 0V to the lower voltage  $V_L$ .

Define  $T_H$  as time for capacitor to charge from 0V to the higher voltage  $V_H$ .



Time between voltages  $V_L$  and  $V_H$ .

$$V_L = V_{sup} \left( 1 - e^{rac{-T_L}{RC}} 
ight)$$
 and  $V_H = V_{sup} \left( 1 - e^{rac{-T_H}{RC}} 
ight)$ 

Rearrange and take natural logs

$$-T_L = RC \ln \left( \frac{V_{sup} - V_L}{V_{sup}} \right)$$
 and 
$$-T_H = RC \ln \left( \frac{V_{sup} - V_H}{V_{sup}} \right)$$



Subtract

$$T_H - T_L = RC \left( \ln \left( \frac{V_{sup} - V_L}{V_{sup}} \right) - \ln \left( \frac{V_{sup} - V_H}{V_{sup}} \right) \right)$$

$$= RC \ln \left( \frac{V_{sup} - V_L}{V_{sup} - V_H} \right)$$

Set  $V_L=\frac{1}{3}V_{sup}$  and  $V_H=\frac{2}{3}V_{sup}$ . Put into expression for  $T_H-T_L$ 

$$T = RC \ln \left( \frac{V_{sup} - \frac{1}{3}V_{sup}}{V_{sup} - \frac{2}{3}V_{sup}} \right) = RC \ln 2 = .693RC \approx 0.7Re$$





Internal circuit blocks of the 555 Timer.

Three resistors in series give reference voltages of  $\frac{1}{3}V_{sup}$  and  $\frac{2}{3}V_{sup}$ .

Comparators toggle a switch SW



Capacitor and output voltage waveforms for the 555 Timer.

Pin 3 gives an output signal which is a indicator of the state of the IC comparators.

Time  $T_1$  to charge from  $\frac{1}{3}V_{sup}$  to  $\frac{2}{3}V_{sup}$  is

$$T_1 = 0.7(R_A + R_B)C$$

Time to discharge from  $\frac{2}{3}V_{sup}$  to  $\frac{1}{3}V_{sup}$  is

$$T_2 = 0.7 R_B C$$



Circuit for generation of arbitrary Mark Space ratio.

Capacitor charges through  $R_1$  and the diode with a time constant of  $T_1 = 0.7R_1C$ .

The discharge path is through  $R_2$  and the diode in series with  $R_2$  to give a time constant  $T_2 = 0.7R_2C$ .



Triggered operation of the 555 Timer.

Monostable operation instead of astable operation.



555 Timer circuit to give 0V for 6ms followed by 10V for 13ms.

Choose  $C = 0.1 \mu F$ .

$$T_2 = 6 \times 10^{-3} = 0.7 \times .1 \times 10^{-6} \times R_B$$
 and therefore  $R_B = \frac{6 \times 10^{-3}}{.7 \times .1 \times 10^{-6}} = 86 k\Omega$ 

 $T_1=13\times 10^{-3}=.7\times .1\times 10^{-6}(86k\Omega+R_A)$  and therefore  $86k\Omega+R_A=186k\Omega$  which gives

$$R_A = 100k\Omega$$