

 The output from a differentiator circuit is given by:

$$V_{out} = -CR_f \frac{dV_{in}}{dt}$$

• The output voltage is the time rate of change of the input voltage signal.

Charge on the capacitor is

$$Q = C \times (V_{in} - 0) = C \times V_{in}$$

Input current is time rate of change of charge

$$I_{in} = \frac{dQ}{dt} = C\frac{dV_{in}}{dt}$$

Which also flows in feedback resistor, R_f ,

$$I_{in} = I_f = \frac{0 - V_{out}}{R_f} = -\frac{V_{out}}{R_f}$$

Which gives equation for differentiators:—

$$V_{out} = -CR_f \frac{dV_{in}}{dt}$$

Function generator, FG, gives output triangular waveform of frequency 1kHz and amplitude 10mV

 $CR=0.01\mu F imes 1M\Omega=10^{-2} {
m seconds}$ Period of waveform $T=\frac{1}{f}=\frac{1}{1000}=1ms$ The input waveform goes from $\pm 10mV$ to

The input waveform goes from $\pm 10mV$ to $\mp 10mV$ in 0.5ms and therefore the rate of change of the input signal is

$$\left| \frac{dV_{in}}{dt} \right| = \frac{10mV - (-10mV)}{0.5 \times 10^{-3} sec} = \pm 40 \frac{V}{sec}$$

$$V_{out} = \pm 10^{-2} sec \times 40 \frac{V}{sec} = \pm 0.4V$$

Note sign of output and alignment.

Calculate the output voltage waveform for an input triangular waveform of frequency 250 Hz and of amplitude 30 mV.

