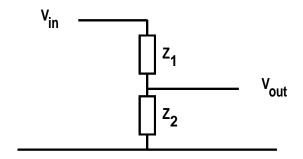
Resistive or reactive components can be used in potential dividers to give:—

$$V_{out} = \frac{Z_2}{Z_1 + Z_2} V_{in}$$

When the term $\frac{Z_2}{Z_1 + Z_2}$ is put into the form $|A| \, e^{j\phi}$ then

 $\left|A\right|$ is the attenuation of the potential divider and

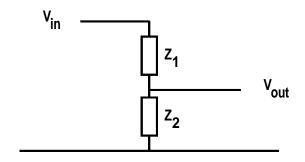

 ϕ is the phase shift.

Mathematical interlude!

Two important results from complex algebra When a complex number, c, is in the form c=a+jb, the modulus and the phase angle for c and $\frac{1}{c}$ are given by:—

$$|a+jb| = \sqrt{a^2 + b^2} \quad \text{and} \quad \tan \phi = \frac{b}{a}$$

$$\left| \frac{1}{a+jb} \right| = \frac{1}{\sqrt{a^2 + b^2}} \quad \text{and} \quad \tan \phi = \frac{-b}{a}$$



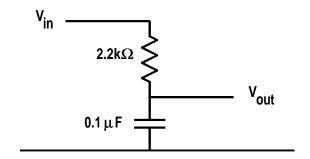
Replace the resistors of potential divider by any combination of resistors, capacitors or inductors in series or parallel.

A resultant impedance can be calculated for each half of the potential divider.

The current in each of the two impedances is given by $\frac{V_{in}}{Z_1 + Z_2}$.

This current flowing through Z_2 gives an output voltage Z_2I .

The ratio of output to input voltage is then

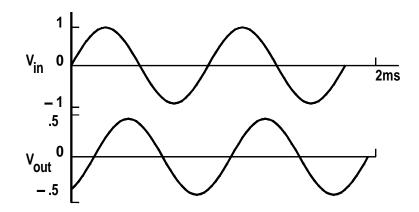

$$\frac{V_{out}}{V_{in}} = \frac{Z_2}{Z_1 + Z_2}$$

but since Z_1 and Z_2 are complex then $\frac{Z_2}{Z_1+Z_2}$ is usually also complex and has a magnitude less than 1.

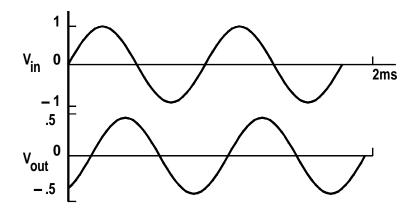
If we express $\frac{Z_2}{Z_1+Z_2}$ in the form $|A|\,e^{j\phi}$ then |A| gives the attenuation of the potential divider and ϕ gives the phase shift in radians.

Calculate the attenuation and phase shift in an RC network where $R=2.2k\Omega$, $C=0.1\mu F$ and the frequency is 1.5kHz.

Calculate the amplitude of the output signal if the amplitude of the input signal is 1V.



The network response is given by:-


$$\begin{array}{rcl} \frac{V_{out}}{V_{in}} &=& \frac{Z_2}{Z_1 + Z_2} = \frac{\frac{1}{j2\pi fC}}{R + \frac{1}{j2\pi fC}} \\ &=& \frac{1}{1 + j2\pi fCR} \\ \text{Calculate} & \tan\phi &=& -2\pi fCR \\ &=& -2\pi 1500 \times 0.1 \times 10^{-6} \times 2200 \\ &=& -2.07 \\ \text{So that} & \phi &=& \tan^{-1}(-2.07) \\ &=& -1.12\, \text{rads or } -64.3 \text{degrees} \\ \text{Attenuation} & \left| \frac{V_{out}}{V_{in}} \right| &=& \frac{1}{\sqrt{1 + \tan^2\phi}} \\ &=& \frac{1}{\sqrt{1 + 2.07^2}} \\ &=& 0.435 \\ &=& 20\log 0.435 \ \text{dB} = -7.23 \ \text{dB}. \end{array}$$

Construct the circuit.

Display the input and output waveforms on an oscilloscope

We calculated a phase shift of -1.12 radians. In the oscilloscope diagram the output waveform is displaced to the right by 1.12 radians or 64 degrees relative to the input voltage waveform.

So we obtain the useful rule that:-

- If the phase shift is positive then the output waveform is shifted to the left and is said to lead the input waveform.
- If the phase shift is negative then the output waveform is shifted to the right and is said to lag the input waveform.