The unit of inductance is the Henry and the circuit symbol used for the inductor is:—

A rate of change of current of one amp per second through an inductor of one Henry gives a voltage across the inductor of one volt.

Current flowing through an inductor:—

$$I = I_0 \sin(2\pi f t)$$
 then
$$V = L2\pi f I_0 \sin(2\pi f t + \frac{\pi}{2})$$

Law of electromagnetic induction, Lenz's law Rate of change of magnetic flux in a coil and the induced emf:—

$$\mathcal{E} = -L\frac{dI}{dt}$$

where the unit of inductance, L, is the Henry.

Apply a sinusoidal voltage across an inductor so as to give a current in the inductor

$$I = I_0 \sin(2\pi f t)$$

then from Lenz's law, this externally applied voltage is opposed by the induced emf:—

$$V = -\mathcal{E}$$

$$= L \frac{dI}{dt}$$

$$= L \frac{d}{dt} (I_0 \sin(2\pi f t))$$

$$= L 2\pi f I_0 \cos(2\pi f t)$$

$$= L 2\pi f I_0 \sin(2\pi f t + \frac{\pi}{2})$$

$$= L \omega I_0 \sin(\omega t + \frac{\pi}{2})$$

where $\omega = 2\pi f$ is the angular frequency

ullet Air cored inductors, Inductance in μH is

$$L(\mu H) = \frac{d^2 n^2}{46d + 102b}$$

where n is the number of turns, d is the coil diameter in cms b is the length of the coil in cms.

 Ferrite cored inductors have higher values for L because of the higher magnetic permeability of the ferrite core.

A typical formula would be:—

$$L(\text{in nH}) = n^2 A_L^2$$

where n is the number of turns of wire A_L is a parameter called the Inductance Factor.

Example

A sinusoidally varying current of 2mA amplitude and frequency 3kHz passes flows in a 10mH coil. Calculate the voltage and plot the I and V waveforms.

$$V = L\frac{d}{dt}(I_0 \sin(2\pi f t)) = L2\pi f I_0 \sin\left(2\pi f t + \frac{\pi}{2}\right)$$

= 0.01 × \pi60000 × .002 × \sin(2\pi3 × 10^3 × t + \frac{\pi}{2})
= 0.377 \sin(18840t + 1.57)

