Units: Coulombs, Farads, Volts.

$$Q = C \times V$$

Capacitors connected in parallel

$$C_p = C_1 + C_2 + C_3 + \cdots$$

$$\begin{array}{c|c} \hline c_1 \\ \hline c_2 \\ \hline c_3 \\ \end{array} = \begin{array}{c|c} \hline c_p \\ \hline \end{array}$$

If
$$V = V_0 \sin(2\pi f t)$$

is applied across a capacitor, the current is 90^0 or $\frac{\pi}{2}$ radians out of phase with the driving voltage and is given by:—

$$I = CV_0 2\pi f \sin(2\pi f t + \frac{\pi}{2})$$

Differentiate Q = CV to obtain the current:—

$$I = \frac{dQ}{dt} = C\frac{dV}{dt}$$

The current through a capacitance is proportional to the capacitance and to the rate of change of the voltage across the capacitor.

Apply a sinusoidal voltage waveform across a capacitor.

$$V = V_0 \sin(2\pi f t)$$
 We then get
$$I = C \frac{dV}{dt}$$

$$= CV_0 2\pi f \cos(2\pi f t)$$

$$= CV_0 2\pi f \sin(2\pi f t + \frac{\pi}{2})$$

For a sinusoid, the voltage and the current are 90^0 or $\frac{\pi}{2}$ out of phase Phase of I is positive with respect to V Current leads the voltage waveform.

Capacitors

If a $15V_{pp}$, 20kHz sinusoidal voltage is applied across a $0.1\mu F$ capacitor, calculate the current in the capacitor.

$$I = CV_0 2\pi f \sin(2\pi f t + \frac{\pi}{2})$$

$$= 0.1 \times 10^{-6} \times 15 \times 2 \times \pi \times 20 \times 10^{3}$$

$$\times \sin(2 \times \pi \times 20 \times 10^{3} \times t + \frac{\pi}{2})$$

$$= 0.188 \sin(1.256 \times 10^{5} \times t + 1.57) \text{Amps}_{pp}$$

