When resistors are connected in parallel, the same voltage difference or potential difference is present across all of the resistors.

$$V_p = I_{Total} R_p = I_1 R_1 = I_2 R_2 = I_3 R_3 = \cdots$$
 but $I_{Total} = I_1 + I_2 + I_3 + \cdots$ Therefore $\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots$

Figure 3.1:—

Example 1

Calculate the equivalent resistance for the parallel resistor circuit shown in the Figure 3.2.

Figure 3.2:—

$$\frac{1}{R_p} = \frac{1}{51k\Omega} + \frac{1}{4.7k\Omega} + \frac{1}{3.9k\Omega}$$

$$= 4.89 \times 10^{-4}\Omega^{-1}$$
Therefore $R_p = 2046\Omega$

$$= 2.046k\Omega$$

Example 2

In the circuit shown in Figure 3.3, if the current in the 820Ω resistor is measured to be 2.5mA, calculate the battery voltage and also calculate the total current flowing through the battery. Calculate the current in the $3.9k\Omega$ resistor.

Figure 3.3:—

$$V_{Battery} = 2.5mA \times 820\Omega$$

 $= 2.5 \times 10^{-3} \times 820V$
 $= 2.05V$
 $\frac{1}{R_p} = \frac{1}{820} + \frac{1}{3900}$
 $= 1.48 \times 10^{-3}$
Therefore $R_p = 677\Omega$
Hence $I_{Total} = \frac{2.05V}{677\Omega}$
 $= 3.03 \times 10^{-3}A$
 $= 3.03mA$
 $= 3.03mA$
 $= 3.03MA$
 $= 3.03MA$
 $= 5.26 \times 10^{-4}A$
 $= 0.526mA$ or $526\mu A$