When resistors are connected in series, the same current flows in all of the resistors.

The voltage drop across the equivalent resistor R_{series} is:-

$$V_{series} = IR_{series} = IR_1 + IR_2 + IR_3 + \cdots$$

Therefore
$$R_{series} = R_1 + R_2 + R_3 + \cdots$$

Example 1

Calculate the current in the circuit of Figure 2.2, if the voltage across the two resistors in series is 3.8V.

Calculate the current in the 100R resistor.

$$R_s = R_1 + R_2 = 2.2k + 100$$

= $2.2 \times 10^3 + 100 = 2300\Omega$
 $I = \frac{3.8V}{2300\Omega}$
= $1.65 \times 10^{-3} = 1.65mA$

Example 2.

Calculate the current in the circuit of Figure 2.3, if the voltage across the $1.8k\Omega$ resistor is 6.4V. Calculate the voltage across the $2.7k\Omega$ resistor. Calculate the battery voltage.

Current =
$$I = \frac{6.4V}{1.8k\Omega} = \frac{6.4}{1800}$$

= $3.55 \times 10^{-3} = 3.55mA$
 $V_{2.7k\Omega} = 3.55mA \times 2.7k\Omega$
= $3.55 \times 10^{-3} \times 2.7 \times 10^{3} = 9.58V$
 $V_{Battery} = 6.4V + 9.6V = 16V$