Unit 20 R-M Applications and Minimization

A function such as Q = A® B @ C & D will only take logic 1 when
an odd number of A, B, C' and D have logic 1. The function therefore
acts as a parity generator.

e An n input Sum-of-Products function requires 2" sets of test inputs.
An n input Reed-Muller circuit can be tested using 4 + n + 2n, sets of
test inputs

o Reed-Muller expressions are minimized by selecting either the uncom-
plemented or complemented form of each of the inputs so as to obtain
a minimized expression.

e The Polarity Vector is used to define which form of the input is to be
used in the Reed-Muller expression.

e The techniques for minimizing Reed-Muller expressions are the subject
of ongoing research.

Before examining the methods available for the minimization of Reed-
Muller expression, there is a more fundamental question to be answered. It
is, why use the Reed-Muller form at all? The simple and only really practical
answer to this question is that the Reed-Muller form for an expression and
the resulting hardware implementation yields a function and hardware im-
plementation which is fully testable with a finite (proportional to n) number
of discrete tests.

Testability is not a problem for small logic systems for which all possible
inputs can be applied during testing but for large systems having n inputs the
number of possible inputs is 2". For a moderate system having 60 inputs this
gives 108 distinct input tests which must be applied for exhaustive testing.
This could take a few years to carry out by which time the system might have
developed a new fault due to age. Also remember that we do not simply test
the design but we also have to test each machine that is built for compliance
to the design. Therefore, when we use conventional design strategies we are
constrained to use essentially untested computers! These untested computers
are then used to design roads, bridges, buildings, cars, aircraft, to control
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traffic systems, national economies etc. It is a tribute to modern design
and manufacturing techniques that there are so few inaccurate computers
in use. (Note that a computer that stops working is safe; a computer that
gives an incorrect answer which masquerades as a correct answer is the really
dangerous machine. Unless you are in a modern, fly-by-wire aircraft when
the computer stops in which case you will need a parachute!)

The testability problem has been considered by Reddy who has pointed
out that the testability of a machine should be built into the design spec-
ifications so that the machine only includes easily testable networks. The
Reed-Muller form which is implemented as AND/XOR gate arrays has the
required testability properties.

The types of faults which may be expected to occur in normal circuits
are “stuck at 0” and “stuck at 1” (represented by s-a-0 and s-a-1) which may
occur on either the inputs or the outputs of the AND gates and also logic
output faults at the output of the XOR gates.

Some restrictions are placed on the numbers of faults for which tests
can be developed. A fault at only one of the inputs to the AND gates can
be detected. A single faulty output from the AND gates can be detected.
A single faulty XOR gate can be detected. Testing for the occurrence of
two simultaneous faults requires access to the internal circuitry of the arrays
which is not always possible. The reason for imposing these limitations to
single system faults is that it is possible for two faults in a binary logic system
to cancel each other out.
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Figure 20.1: Circuit implementation of Reed-Muller AND/XOR function

If we take the gate array circuit shown in Figure 20.1 as a specific example
we see that setting r1 = x9 = x3 = x4 = 1 causes the outputs of all of the
AND gates to be 1’s. Then if we switch the input zy from a 0 to a 1 the output
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of the XOR cascade should give a value which depends on the accumulated
parity of all of the inputs to the XOR cascade. In this example, the output
should be a 1 when 2y = 1 and a 0 when z; = 0. A test vector can then be
written which details the values to be applied to the inputs and which also
gives the expected output:

Xy T4 To T3 T4 oOUt
(011110)

This test vector tests all of the XOR gates but is not sufficient to fully test
the cascade. There are three other test vectors which combine to form a
test matrix for the cascade. It should be noted that a different cascade may
have different parity and therefore the outputs may be complemented. If we
remove the labels on the columns we then obtain the test matrix, F¢, which
has 4 rows of test vectors for locating faults in the XOR cascade:

Fc=

== O

1
0
1
0

O = O =

1 10
000
1 11
0 01
This test matrix tests each of the XOR gates in turn, working from left to
right, by applying all four possible input combinations to the XOR gate and
then using the output of the gate to form the input to the next XOR gate.
The sequence is that the individual pairs of gate inputs and expected outputs

which result from applying the test vector in the first row of the test matrix
are:

(0@1=1), (1®1=0), (0@l=1), (1®1=0),

A s-a-0 or s-a-1 XOR gate input or output will prevent the propagation of
at least one of the test vectors along the XOR cascade.

The application of the test matrix, F¢, also serves to verify that none
of the outputs of the AND gates are s-a-1 or s-a-0 and that the connections
between the AND gate outputs and the XOR gate inputs are intact.

It is also necessary to verify that none of the inputs to the AND gates
are s-a-1 or s-a-0. This is done by sequentially applying 1’s to all AND gate
inputs with the exception of a single AND gate and verifying that the correct
output is obtained. For these tests, the zy input is not switched and can be
assigned a “don’t care” state. We will assign an arbitrary value of 0 to this
xo input for the sake of definiteness in our predictions of expected output
values. The test matrix, F o, which has n rows of test vectors for testing the
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AND gate inputs of the circuit shown in Figure 20.1 is then:
001110
Fp =

O OO
[ S g —
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1
0
1

g

1
0
1

The final column in this test matrix is, again, the output from the XOR
cascade. In the case of the test input represented by the first row of the
F A test matrix, 001110, the inputs to the XOR gates are calculated by the
following table in which the elements of the upper row are the AND gate
outputs and the elements of the lower row are either the xy input or the
outputs from the XOR gate. The final value in the lower row represents the
expected output and is shown in the final column of the F 5 test matrix.

000101 —
0000110

This F test matrix does not fully test all of the inputs to the AND gates
since a fault on an input line which is connected to an even number of AND
gates does not affect the parity of the inputs to the XOR gate cascade and
therefore will not give a discrepancy between the expected and the actual
output. For instance, in Figure 20.2, the input z; is applied to the first,
second, third and fifth AND gates. Therefore a s-a-1 or a s-a-0 on this input
will not affect the expected output. On the other hand, a fault in an input
such as x5 which connects to three AND gates will not cause a parity change
and a change in the XOR gate cascade output whereas the expected result
is that there will be a change in parity so such a fault in an input connected
to an odd number of product terms will be detected.

We therefore require a test set which will detect faults in inputs which are
connected to an even number of AND gates such as z;, x3 and z, in Figure
20.1.

What is needed is an input test set which will cause an odd number of
AND gates or better still a single AND gate which feed into the XOR cascade
to change state when the input is changed from a 0 to a 1. This will give an
odd parity for the inputs to the XOR gates and force the final output from
the XOR cascade to change state resulting in a changed output signal which
can be compared to the expected signal.

In the example circuit in Figure 20.1, we take a minimum product term
such as the x5 term which is formed by the first AND gate and assign the
value o = 1. The input x; is then assigned the two values r; =1 and z; =0
in turn with all of the other inputs x3 = x4 = 0. Only the first AND gate
changes output as a result of z; changing state.
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Therefore, if we assign an arbitrary value of xq = 0, we can test an input
which connects to an even number of product terms or AND gates by using

a test matrix such as:
Fo, — 0010O0°0O0
B1=lo0 11001

Similar test matrices are needed for each of the other inputs which also
appear in an even number of product terms, so if there are n, such input
terms then there will be 2n, tests associated with them.

The total number of tests which have to be carried out on a Reed-Muller
AND/XOR type of gate array in order to test for correct functioning is
therefore 4 + n + 2n, with the one restriction that only single s-a-1 or s-a-0
type faults occur.

We therefore see that the number of tests required for testing AND/XOR
gate arrays is a simple linear function of the number of primary inputs
whereas the number on tests required to test an AND/OR Boolean type
circuit is of the order of 2".

In the examples which we have discussed we have used the fixed polarity
Reed-Muller form, that is the form in which the inputs appear only in the
uncomplemented form as A, B, z3, etc. We can also use some or all of the
variables in the complemented form and then we have the mixed polarity
Reed-Muller form. The only restriction is that an input variable can only
appear in one of either the complemented form or the uncomlemented form
and must not appear in both forms. We can keep track of which polarity
is used for each input by use of a Polarity Vector, k. For the example
discussed above, the polarity vector is k = (1,1,1,1) because A, B, C, D
were used in the uncomplemented form. If, instead, we had used A, B, C,
D as primary inputs to the AND gates then the polarity vector would be
k = (1,0,0,1) in which case the Reed-Muller form of the function would
be different while still yielding the same logical function. This method of
specifying the polarity by use of a polarity vector is important because the
minimization of the Reed-Muller form for a function is achieved by selecting
the polarity which will give the simplest expression.

When the polarity vector contains zero elements, the inputs appear in the
complemented form. This gives us a method of converting from the Reed-
Muller form to the Generalized Reed-Muller form. All that has to be done
is to make the substitutions for a variable using the identity A =1 & A.

If we take the function which was used as a working example and which
was illustrated in Figure 20.1:

f(mn,l...xo) =1® 2172 D 1173 D T1T4 B X3T4 D T1X2T3 B T2T3X4
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This expression has a polarity vector, k = (1,1,1,1). Conversion to a polar-
ity vector k = (1,0,0,1) involves making the appropriate substitutions and
gives:

J(@n-1..20) = 20@21(1D72) P21(lDT3) D x124 B (1 ® T3)24
©1.(1072)(1073) ® (10 72)(1 S Z3)1s
= T0DPT1 PT1T2 DT BT 1T3D X124 D T4 D T324
Dr1 B 1172 D T1T3 D X17T2T3 D T4 D TaTy D T3xy D T2T324
= 20 (110210 71) D (24D Ts) D (2172 © 2172) D (7173
BT1T3) B 1174 D Toxs ® (T3x4 B T3xy) D T1T2T3 D ToT3T4
0P D0D0B0D 0D 2124 D T2x4 D 0D 217273 D T2T3%4

ToPx1 DPOD T124 D Toxys D x1T2X3 D ToT3%4

The equivalence of the two forms for this function can be verified by
using a simple program to verify that the two forms give the same outputs
for all possible inputs. It is possible to test for all inputs when there are
only five variables but exhaustive testing would not be possible for systems
with much larger numbers of inputs. A QuickBasic program for testing this
system would be:

100 REM

INPUT x0, x1, x2, x3, x4

x0 = —x0: x1 = —x1: x2 = -x2: x3 = -x3: x4 = -x4

REM logic 1 is represented by -1 in QuickBasic

z = x0 XOR x1 XOR 0 XOR (x1 AND x4) XOR ((NOT x2) AND x4)
XOR (x1 AND (NOT x2) AND (NOT x3)) XOR ((NOT x2)
AND (NOT x3) AND x4)

p = x0 XOR (x1 AND x2) XOR (x1 AND x3) XOR (x1 AND x4)
XOR (x3 AND x4) XOR (x1 AND x2 AND x3)
XOR (x2 AND x3 AND x4)

PRINT z, p

GOTO 100

When different polarities, represented by different polarity vectors, are
used it is found that some lead to expressions which are simpler than others
in that fewer gates are required. The minimization problem then reduces
to the problem of searching the set of alternative Generalized Reed-Muller
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forms for the simplest form. Some techniques, based on the Karnaugh map
approach, have been used to obtain this minimized form but these methods
are only successful for small numbers of inputs.

Hand calculation of the Reed-Muller form for different polarity vectors is
tedious and time consuming as can be seen by working through the example
given above. Larger numbers of variables require rapidly increasing times.
To obtain a minimum using the brute force approach, it is necessary to
calculate the expression for all polarity vectors. The consequence is that the
minimization problem becomes an exponential time problem.

What is needed is an analytic method or an algorithm which is suitable
for implementation on a computer and which is capable of identifying the
polarity vector which gives a minimized Generalized Reed-Muller form for
the expression. The present state of the art in hardware development is
that FPGAs (Field Programmable Gate Arrays) have been implemented in
AND/XOR form and now have comparable speeds to the AND/OR versions.
Unfortunately, the computerized minimization procedures for AND/XOR
arrays do not yet match the capabilities of procedures such as SIS and
ESPRESSO (Unit 17) and more theoretical work remains to be done.

The current situation is that algorithms have not yet been developed for
identifying the polarity vector which specifies which of the possible 2" Gen-
eralized Reed-Muller (GRM) forms gives the optimum minimized solution.
When n is small it is feasible to calculate all of the GRM forms but for n
greater than 16, corresponding to 16 primary inputs, the computational load
starts to become excessive.

However, Tsai and Marek-Sadowska, Tran and also Fleisher, Tavel and
Yeager have proposed algorithms and these will be now be presented as the
present state of the art in Reed-Muller minimization and as an indication of
lines of possible future development.

Representation of GRM functions. Tsai and Marek-Sadowska have
developed a modification of the Binary Decision Diagram (BDD) representa-
tion which allows a Generalized Reed-Muller (GRM) function of eXclusive-
OR cubes and the associated polarity vector to be represented in what is
called a Functional Decision Diagram (FDD). The key to understanding the
FDD representation is embodied in two rules:

1. If the variable is present in a cube (or term of the Reed-Muller repre-
sentation) then the branch value (0 or 1) is the same as the value of
the variable in the polarity vector.

2. If the variable is absent from a cube then the branch value is opposite
to the value of the variable in the polarity vector.
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Take, for example, the FDD used by Tsai and Marek-Sadowska (1994)
and shown in Figure 20.2 (a).

Figure 20.2: FDD for f =7, ® 1 ® 23 & 2173 and V = (101)

The polarity vector is V' = (101), that is the variables are x1, T3 and z3,
and the Reed-Muller function is:

=201 D 3D 2172

Then the path through the FDD for the cube x;Z3x3 is as shown in by the
heavy lines in Figure 20.2 (b) with the indicated Rules applying at each
branch.

Extraction of GRM expression. When the polarity vector is V =
(111) the first two rows of the Covering Matrix, M., are given by a numerical
index corresponding to the column number and below the index, the binary
representation of that index number as shown in the segment of M, shown
below.

1 2 3 4 5 6 7
4 7 6 1 0 3 2

When a different polarity vector is used the indices are the same but the
vertices are obtained by performing a bit by bit addition without carry of the
binary representation of the index and the 1’s complememt of the polarity
vector. For instance, when the index is 4 or 100 in binary and the polarity
vector is V' = (010), the 1’s complement is (101) and the the corresponding
vertex is for index 4 calculated as follows:
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1
1
0

oo O

1
0
1

In the covering matrix, M, the other rows are obtained by inserting c’s
to denote that the cube covers the vertex or -’s to denote that the cube does
not cover the vertex. In all covering matrices, for a given n, the pattern of
¢’s and -’s is the same and is as shown in the matrix below. An extra row has
been added to the header which shows the decimal equivalent of the binary
boolean term. This allows the minterm belonging to a particular column
to be identified easily when the matrix is used to generate a Generalized
Reed-Muller form of the function.

Index 0 1 2 3 4 5 6 7
Vertices 101 100 111 110 001 000 011 010
Ym terms | 5 4 7 6 1 0 3 2
1 c c c c c c c c
T3 - C - ¢ - c - c
To - - c ¢ - - C c
Cubes 973 - - - ¢ - - - C
T - - - - ¢ C ¢ ¢
T1T3 - - - - - c - c
T1Z2 - - - - - - C C
T1T2T3 - - - - - - - c

In this example, if we want to find which vertices are covered by the cube,
T1Z3, locate the row for that cube and then move across the matrix to locate
the ¢’s so that we find that that particular cube covers the cubes (000) and
(010).

The source vertex, which is in the first column, is covered only by the
cube 1. The polarity vertex, which is in the right hand column, is covered
by all of the cubes.

If a vertex is in the on-set of a GRM expression then it must be covered
by an odd number of the XORed cubes of the expression.

If a vertex is in the off-set of a GRM expression then it must be covered
by an even number of the XORed cubes of the expression.

The cube-vertex covering matrix can now be used to generate the GRM
form of the function from a minterm list. Take as an example the function
and polarity vector:

f(zg, xo,z3) = ¥m(1,3,6) for V =(010)
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start with the lowest index, 0, and examine the function to see if a minterm
of the function is present in that column.
The minterm in the index 0 column is 5 which is not in the function so the
cube 1 is absent from the GRM function.
The column for index 1 contains minterm 4 which is absent from the minterm
function so that the cube Z3 is absent.
The column for index 2 contains minterm 7 which is absent from the minterm
function so that the cube x5 is absent.
The column for index 3 contains the minterm 6 which is present in the
minterm function so the cube 2,73 is present in the GRM function.
The column for index 4 contains the minterm 1 which is present in the
minterm function so the cube Z7 is present in the GRM function.
The column for index 5 contains the minterm 0 which is absent from the
minterm expression but Z7 is already present in this column so that we must
include the cube Z7Z3 in the GRM function so as to have an even number of
cubes in the off-set of of the XOR expression.
The column for index 6 contains the minterm 3 which is present in the func-
tion but the cube 77 is already present in the column so the cube Zyxzs is
absent so as to give an odd number of terms in the XOR expression.
The column for index 7 contains the minterm 2 which is not present in the
function so we must have an even number of cubes in the XOR expression.
The cubes 2,73, T1 and T3 are already present so we must include the cube
T129T3 in order to get an even number of cubes in the expression

We therefore now have the equivalent functions:

f=%m(1,3,6) = 2973 B T1 ® T1T3 ® TixoTz for V = (010)

Identification of optimum polarity. Tsai and Marek-Sadowska pro-
pose a heuristic algorithm for finding the optimum polarity which is based
on the conjecture that if there exists a point in n dimensional Boolean space
that is equally distant (Hamming distance) to all k vertices in the on-set of
f and the distance is a minimum, then that point is the best polarity for the
GRM form of the function. For instance, the Hamming distance from each
of the Boolean terms in f(z;...z5) = ¥m(0,6,15) to the point (00110) is 2
and therefore the best polarity vector is V' = (00110).

It will not be possible to obtain a center for the vertices in Boolean space
for all cases and it is then necessary to make a best choice. If in the on-set of
a function, a particular variable, z;, is examined and the number of vertices
containing 1’s and 0’s are counted, then the value of the polarity for that
variable is whichever is the greater. If there are equal number of 1’s and 0’s
then Tsai and Marek-Sadowska found that no great difference results from
assigning 1s to the polarity vector for that variable.
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As an example, the function specified by the minterm f = ¥m(1,3,6,7)
is used. The variables appear in the frequencies shown in the table and the
polarity vector is calculated accordingly:

minterm | £;1 zo X3

1 0 0 1

3 0 1 1

6 1 1 0

7 1 1 1

Frequency of 1’s 2 3 3

Frequency of 0’s 2 1 1
Polarity 1/0 1 1

With this procedure, a good polarity vector for f = ¥m(1,3,6,7) is found
to be V = (111)
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20.2 Problems

20.1 Trace the path through the FDD shown in Figure 20.3 for each of the
terms of the function f =75 ® 1 & x3 @ 173 when the polarity vector
is V = (101)

20.2 Obtain the Reed-Muller function which is represented by the FDD
shown in Figure 20.4 when the polarity vector is V = (111).
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Figure 20.3: Obtain the RM function.

20.3 Obtain the FDD for the Reed-Muller function:
(e, 21, 20) = To ® T2 ® T12¢ B Tax1 D ToT1%g
when the polarity vector is V' = (111).

20.4 Calculate a suitable polarity vector for a GRM representation of the
function:
f=%m(0,2,4,6,7)

20.5 Write a C or QuickBasic program which has as its input a polarity vec-
tor and the term of a Reed-Muller expression and which generates the
Reed-Muller form of the expression corresponding to another polarity
vector which is to be specified by the user.



