Unit 18 Binary Decision Diagrams.

A Binary Decision Diagram (BDD) is a directed graph which is tra-
versed from an entry node to a terminal node.

e A BDD can be generated from:

— A truth table.

— A Boolean logic function.

— A Karnaugh map.

— An If...then...else. program.

The optimum choice of ordering of variables in a BDD is an NP-hard
problem.

Methods exist for obtaining a good ordering of variables.

Methods exist for simplifying BDDs.

In digital logic systems, a variable can have one of two values, either 0 or
1. As each new input variable is added, the number of possible configurations
of the system input state increases by a factor of 2.

In the Boolean algebra approach to logic function computation of a func-
tion, @, the full expression for () is computed by computation of each of
the terms of the Boolean expression which are then combined to give the
final output value. There is an alternative representation for functions and
an associated computation procedure called the Binary Decision Diagram
(BDD) method or the Ordered Binary Decision Diagram (ODBB) method.
In this representation, the values of the variables are tested in sequence and
a route is traced through a tree structure from a root node to an output
node. Some authors use the term vertex instead of node. Figure 18.1 shows
binary decision diagrams for systems with (a) a single variable and (b) two
variables.

In these diagrams, we will follow the convention whereby the node is
labeled with the variable examined and there are exactly two exit paths
from a node except for a terminal node. For clarity in the diagrams, we will

115



116 Fundamental Digital Electronics by Brian Lawless

Figure 18.1: .

adopt the convention that the exit edge from a node for logic 0 is indicated
with a dashed line and the exit edge for logic 1 is indicated with a full line.
The 0 and 1 beside the exit edges shown in Figure 18.1 will be omitted in
subsequent figures.

Nodes which represent variables are shown as circles. Terminal nodes are
represented by squares. The variables are represented by zi, xs,... x,. Since
we anticipate extending the system to apply to applications having greater
than 26 inputs we label the variables with subscripted z, rather than the
capital letters A, B, etc..

The level within a BDD is indicated from 0 to n, starting with 0 at
the output level. Note that the levels in a BDD are in numerical sequence
but that the variables do not necessarily appear in the BDD in numerical
sequence. An n variable BDD will in general then have n + 1 levels. each
root and internal node will have 2 outputs which we label 0 and 1 according
to the value of the variable but we may not always have the 0 output from
a node going to the left as shown. At the output (level 0) the value of the
output may not be the same as the binary output of the previous node. This
is shown in Figure 18.2 (a) and (b) which represent the functions Q = xz;
and Q = 77.




Binary Decision Diagrams. 117

Another example is the exclusive OR function which is shown in the
BDD in Figure 18.3. The symbol @ is usually used to represent the Boolean
exclusive OR operation.

@

Figure 18.3: (a) Q@ = 71 ® 22 and (b) Q = 22 & 1.

In Figure 18.3 (a) we first examine the variable x; at level 2 and then the
variable zo at level 1 with the output at level 0. In Figure 18.3 (b) we first
examine the variable zo and then the variable z; with the output again at
level 0. Note also that the output values at level 0 are not always the same
as the value of the output from the previous node.

In using these BDDs, each of the variables is examined in turn and the
appropriate route is taken at the exit from the node corresponding to that
variable. You should note that, while we have shown a particular variable as
occurring only at one level in the BDD, this is not always the case. Examples
which you may meet in the literature may have different variables located at
different levels in different branches.

A specific path down through a BDD is a representation of a specific row
of a truth table for which each of the variables have specific values of eother
0 or 1. The complete BDD is a representation of the complete truth table in
which the variables in descending order are in the same order as the variables
in the columns of the truth table. This is shown in the these two truth tables.
They represent the same system but appear different because the variable
orderin the columns is changed. In the resulting BDDs z; is at the top level
in the first BDD and x5 is at the top in the second

T To Q Ty I Q
0 O 0 0 O 0
0 1 1 0 1 0
1 0 0 1 0 1
1 1 0 1 1 0



118 Fundamental Digital Electronics by Brian Lawless

An alternative description of the BDD representation is to say that it is
a diagrammatic representation of a sequence of If...then...else logical state-
ments. For example, suppose we have a Boolean expression:

Q = x1(Taxs + T3z4)

this expression can be calculated in stages as follows(see Silva and David):

A = Tyx3
B T3T4
C = A+B
QR = xC

The If...then...else program statements for the same problem would be:

1 If x=1 then 2 else 6.
2 If xz3=1 then 3 ‘else 4.
3 If x,=1 then 6 else 5.
4 If =x4=1 then 5 else 6.
5 Q=1.
6 Q=0.

In computing the Boolean function, all of the elements of the function
are computed before the answer () becomes available. In the If...then...else
structure, some routes to the output (e.g for z;y = 0) are much shorter and
can be computed more quickly. The saving is not significant in this problem
but can be of significance in large problems, of say 64 or more variables,
when the expression has to be computed in frequently called subroutines or
is computed for use in fast, real time applications. The time saving can then
be significant.

The BDD shown in Figure 18.4 is a representation of this If...then...else
structure and illustrates some of the simplification that can be achieved rel-
ative to a full binary decision diagram which contains all possible routes
through the diagram.



Binary Decision Diagrams. 119

Figure 18.4: .

The truth table for this system is shown below:

&
i
8
N
8
w
8
N

e i e i e i e == R = M e M s M en B es Wi e B e
_H _m R, R OO0 RRMHEFROOOO
—— O O M I OO MMFEF OO M=M= OO
_ o, O RO, O OFROFORFO
COHOH KRR ODODODOOOOO O

and the truth table reduces to the Karnaugh map



120 Fundamental Digital Electronics by Brian Lawless

T1.Tg T1-T9 X1-Z9 X1.To
T3.71 0 0 0 0
Tpaa| 0 0
T3.T4 0 0 0 1
T3.7T1 0 0 0 1

This BDD might represent the real world situation where: If the ignition
switch in a car is ON (z1), the driver’s seat is occupied (z3) and the seat
belt is not fastened (x2) then a warning buzzer will sound OR if the ignition
switch is ON (1), the driver’s seat is occupied (z3) and the car door is open
(z4) then a warning buzzer will sound.

In this simple introductory example we have shown how the source infor-
mation for the construction of a binary decision diagram can be any one of;
a Boolean function, an If...then...else program, a truth table, a Karnaugh
map or a car safety problem. We will now discuss the properties of, the
construction of, the simplification of and finally the uses of binary decision
diagrams in a more formal way.

While we have just shown how BDDs can be constructed from source
information contained in truth tables, logic functions or Karnaugh maps,
these representations need never be constructed and instead the BDD can
be the primary and only representation of the problem. Indeed, because of
the sequential nature of the BDD representation, the BDD can incorporate
features which can not be represented in the truth table or logic functions.

It should, however, be pointed out that while the BDD, like the Kar-
naugh map, is suitable for visual interpretation by a human user, the for-
mal mathematical or computer program representation of a BDD is neither
straightforward nor trivial.

A considerable volume of theoretical work has been carried out which

justifies the procedures which are described in this treatment of BDDs. This
work is contained in the research papers of Silva, Bryant, Arborethy and
others (see References) and is in the form of formal definitions, theorems,
lemmas. This formal theoretical foundation has been incorporated in this
discussion without detailed reference or attribution beyond the research pa-
pers referenced at the end of the unit. It is suggested that the reader obtain
an overall appreciation of the operation and use of the BDD method before
studying the grounding theorems of the method.
Properties of Binary Decision Diagrams. A full binary tree representa-
tion of a system having n inputs will have 2" — 1 test nodes and 2" terminal
nodes. In traversing the tree from the entry node to any terminal node, a
total of n tests will be carried out and a total of n edges traversed.



Binary Decision Diagrams. 121

For a large system, say 64 inputs, this gives an impossibly large system,
containing ~ 4 x 10' nodes, and the main aim of the techniques used in the
BDD method is to minimize or reduce the size of this full binary tree.

In general, the problem of minimizing the binary decision diagram belongs
to that class of problem characterized as NP-hard. The archetype of such
problems is the traveling salesman problem in which a salesman is to visit
each of n cities once only and return to his home at the end of the sales trip.
The cities are separated by differing distances and the aim is to minimize
the distance traveled. It is easily seen that on leaving home the salesman
has n choices for the first city to be visited. He has n — 1 possible second
destination choices, n—2 third destination choices etc. which gives factorial n
or n! possible routes. For large values of n a very useful approximation to
n! is to use Stirling’s formula n! &~ n"e™"v/27n. For a small sales trip of say
50 cities most hand held calculators have a factorial function which will give
50! = 3 x 10% possible routes. It is thus not possible to calculate all possible
route distances and choose the shortest even for this moderate sales trip. As
can be seen from the approximation for n! given by Stirling’s formula this
problem has a number of routes which is not a simple polynomial function
of n and is then termed a NP-hard (non polynomial) problem. The rapidly
increasing number of possible routes and consequent increase in required
computing time means that it is not possible to calculate an exact minimum
route. It is, however, possible to calculate a near optimal route.

The BDD problem is also a NP-hard problem because the BDD is mini-

mized for either the average path length or the number of tree nodes visited
by choosing to visit the nodes in an optimum order. We will therefore have
to consider methods for obtaining a good (optimal) BDD as distinct from
the incalculable optimum BDD.
Variable ordering in BDDs. It has been found that one of the most
significant simplifications that can be achieved in constructing a BDD is
obtained by making an optimal selection of the order in which the variables
appear in the BDD in going from level n to level 0. This is well illustrated
in problem 18.3 in the problems at the end of the unit.

The computing time required to find an optimal ordering is not insignif-
icant. Two methods have been compared by Friedman and Supowit which
require computing times proportional to n*3™ and n!2" where n is the num-
ber of variables. For n = 12 the times to compute an optimal ordering are
proportional to 8 x 107 and 2 x 102, a ratio of 1:25000 so a good choice of
method for selecting the ordering is important.

Choice of ordering does not have any effect on the correctness of the BDD.
The main aim is to avoid orderings which cause exponential growth in the
size of the BDD as the number of variables, n, increases.



122 Fundamental Digital Electronics by Brian Lawless

Rather than search for optimal ordering, we present an approach which
is based on the work of Silva and David and of Bryant which gives good
ordering except in the most pathologically difficult problems.

The method of Silva and David uses the Boolean identity (T4 of Unit 9):

Q=A+B+C+D+...=A+(B+C+D+..)A

(If A=1then Q =1,if A =0then A =1 and Q = 1 if and only if one
or more of B, C, D,... = 1). The other identity which is used is from De
Morgan whereby 773 = T7 + T3).

In the algorithm given by Silva and David for the construction of a good
BDD from a Boolean expression there are essentially six steps. A slightly
simplified version of the algorithm is presented here in the form of a worked
example.

Step 1. Obtain the Boolean expression in a minimal sum of products:

Q = 179 + 2374 + T1 T3

Step 2. Order the prime implicant terms so that the terms have increasing
numbers of literals with the terms having the greatest frequency of occurrence
of a literal placed first. Then:

Q = 2122 + T1 T5 + 2374
Step 3. Use the Boolean identity A+ B+ C = A + (B + C)A to obtain:

Q = TTy+ T T5 + T3T4
= 1%y + (T1T5 + 2324)T122
= @1y + (T1T5 + 2374) (T7 + T2)
= T1T2 +T1T5 + T1X3T4 + T1 To T + T2T3%4
= X1%9 + T1 T5(1 + T3) + T123T4 + TaT3Ty
= X1X2+ T1Ts + T1X3%4 + T2T3T4
= 1129+ Hy

where Hy = T1T5+ T123T4 + Tax3%4

Step 4. Now repeat step 3 but operating on the function H,. This will
eventually give the function in the form:

Q = 2129+ T1 T3 + T1X324T5 + £1T2T3%4

= 1(x2 + Tawsts) + T1(T5 + T324T5)



Binary Decision Diagrams. 123

The function () is now in two parts containing z; or Z; so we can use x; as
the variable for the entry node of the BDD. When x; = 1 the sub branch
contains the function F' = z9 + ZTyx3z4 and when x; = 0 the sub branch
contains the function K = T5 + 23245

Step 5. Now repeat steps 2, 3 and 4, applied to each of the sub branch
functions F' and K. At this stage, two variants of the algorithm might be
considered depending on whether or not we require that the variables appear
in the same level in all of the sub branches of the BDD.

Step 6. Construct the BDD. For the example we have obtained the function
in the form:

Q = z1(T2 +T2x374) + T1(T5 + T37475)
= z1(72 + Ta(3(74))) + T1(T5 + x5(23(24)))

which, in this example, then gives the BDD shown in Figure 18.5.

Figure 18.5: BDD for function ) = x1x9 + 324 + Z7 , T5.

Transfomation Rules for Graphical Simplification of BDDs. Bryant
has formalized the set of transformation rules which can be applied to a BDD
which do not alter the function represented but which manipulate the graph
so as to obtain a maximally reduced graph.

The three rules are:

¢ Remove duplicate terminals. If a graph has duplicate final nodes,
then these can be combined. Thus, if a representation has only the



124 Fundamental Digital Electronics by Brian Lawless

outcomes 0 and 1 there are then only two output nodes. More generally,
if a function of n variables has m distinct outputs then it is possible to
reduce the number of outputs nodes from 2" to m. This is shown in
Figure 18.6.

Figure 18.6: Remove Duplicate terminal nodes. XOR function

e Remove Duplicate Nonterminal nodes. If two nodes test the same
variable, are reached by the same outcome of a previous node and have
0 and 1 outputs going to the same output nodes, then these nodes can
be combined. This is shown in Figure 18.7.

Figure 18.7: Duplicate nonterminal nodes. The x3 nodes shown have been
combined. For clarity other nodes have been omitted from the diagram.

¢ Remove redundant tests. If both the 0 and 1 outputs from a node
go to the same next node then that node can be eliminated. This is
shown in Figure 18.8.



Binary Decision Diagrams. 125

Figure 18.8: Removal of the redundant tests on zo and on x3.

18.1 References

Bryant Randal E., Symbolic Boolean Manipulation with Ordered Binary De-
cision Diagrams, ACM Computing Surveys, 24, (3), 293-318, 1992

Bryant Randal E., Graph Based Algorithms for Boolean Function Manipu-
lation, IEEE Transactions on Computers, C-35, (8), 677-691, 1986

Knuth Donald, The Art of Computer Programming, Vol I. Addison-Wesley
3rd Ed 1997

Aborhey, S., Binary Decision Graph Reduction, IEE Proc. 136, Pt. E, (4),
277-283, 1989

Lee C.Y. (1959), Representation of switching circuits by binary decision pro-
grams, Bell System Tech. J. 38(4) 985-999

Akers SR (1978), Binary Decision Diagrams, IEEE Trans Comp. C-27(6)
509-516

Friedman, S.J. Supowit, K.J. (1990), Finding the optimal variable ordering
for binary decision diagrams , IEEE Trans Comp 39, 710-713



126 Fundamental Digital Electronics by Brian Lawless

Silva M. and David R. (1985), Binary-decision graphs for implementation
of Boolean functions , IEE Proceedings 132, Pt E, No 3, 175-185

Brace-Rudell-Bryant BDD package. Available by anon. FTP:
Host: n3.sp.cs.cmu.edu

Directory: /usr/cosmos/ftp
File: bdd.4.2.tar.Z

Dave Long’s package. Distributed by Ed Clarke’s group.
http://www.cs.cmu.edu/ modelcheck

18.2 Problems

18.1 Two three bit binary numbers, x and y, consist of the bits x1, 9, z3 and
Y1, Y2, y3 where the x; and y; bits are the most significant bits. The two
numbers are to be compared and a logic 1 output obtained whenever
x > y. Construct the set of If...then...else tests which will test for
the inequality and then implement these tests in a Binary Decision
Diagram.

18.2 Construct the BDD for a 2 bit comparator which compares two two bit
binary numbers, z and y and which has three outputs, @)1, Q2 and )3
corresponding to x >y, x =y and x < y.

18.3 Draw the BDD diagram for the Boolean function:
Q = 11 (T2w3 + T324)

taking the variables in the order x, x5, x3, 4. Compare the diagram
with that shown in Figure 18.4 for the same problem but with the
variables taken in the order z, x3, T9, x4.



