Unit 17 Espresso minimization algorithm.

The ESPRESSO program is an example of a HEURISTIC algorithm.

The espresso algorithm consists of three basic steps called:

— Expand
— Irredundant cover.

— Reduce.

e A program calles SIS is available on the net which implements the
ESPRESSO algorithm,

Examples of simple input files for SIS are presented.

In this unit we encounter two problems which are becoming significant
with the increasing use of computers.

In the minimization of simple Boolean logic systems, it is, in principle,
possible to test all possible combinations of inputs and verify that the opti-
mum solution has been obtained. It is also possible to follow all of the steps
by which the optimum solution has been obtained.

When the number of inputs and outputs of a Boolean minimization prob-
lem is large, say 50 or more inputs, it is no longer possible to determine,
by enumeration, that the solution obtained is the optimum solution. The
problem is said to be NP-complete. An example of this type of problem is
the traveling salesman problem in which a salesman has to visit n cities and
the distance traveled is to be minimized. There are n! (factorial n) routes.
For 50 cities, there are 3 x 10% possible routes so it is evident that even
for this small number of cities, it is no longer possible to calculate the total
distance for all possible routes and be sure that the optimum route has been
obtained. A good algorithm for the solution of this type of problem will give
what is called a near optimal solution.

The second difficulty with large problems is that they can no longer be
solved analytically by hand and that near optimal solutions can only be
obtained by the use of computer programs operating with a set of algorithms
which have been shown to give good solutions by extensive trials on other

103

104 Fundamental Digital Electronics by Brian Lawless

similar problems. The solution of the problem therefore depends on the
application of a program which can not be proved to be correct but which
must be accepted with the assumption that if it gave good solutions on similar
problems it will give good solutions on the present problem.

So we are now faced with the situation where large Boolean minimiza-
tion problems cannot, because of their size, be fully solved and we have to
compromise on a near optimal computer solution. There have been many
programs written which obtain such near optimal solutions

One of the programs which is most open to analysis is the SIS (Se-
quential Interactive Synthesis) package of programs from The Department
of Electrical Engineering and Computer Science of the University of Cali-
fornia, Berkeley. The algorithms and the program structure are described
in Logic Minimization algorithms for VLSI Synthesis by Brayton, Hachtel,
McMullen and Sangiovanni-Vincentelli and the program itself can be down
loaded from the http://www.mrc.uidaho.edu/vlsi/cad_free.html net site or
from the ic.eecs.berkeley.edu site and is available in both both UNIX and
DOS port formats. The version which has been used for the examples in
this unit is the version SIS for DOS which is the DOS port of the SIS
program which was carried out by Paul Stallard, Dept of Computer Sci-
ence, University of Bristol. Email: paul@cs.bris.ac.uk and Dave Protheroe,
Dept of Electrical and Electronic Engineering, South Bank University, Email:
prothed@vax.sbu.ac.uk

The SIS program is really a suite of algorithms which can be used for
solving many problems. In this unit we are concerned with the ESPRESSO
algorithm which is included as a command in the SIS program.

We will give a brief description of the ESPRESSO algorithm here as an
illustration of the types of of algorithms that are used in such computerized
minimization problems but is should be borne in mind that this is a public
domain program and that there are many confidential, proprietary programs
in use which are not subject to public scrutiny and testing but which are
being used to design logic systems which are sold to the public. It is left to
the reader to consider whether lack of public scrutiny of design methods is
a healthy situation and whether a manufacturer’s assertion that a particular
product is not qualified for life critical applications is a valid defense in
the event of an accident caused by a program containing a bug. It is also
worth considering whether it is valid for a manufacturer to exclude the use
of advanced integrated circuits from use in life critical applications on the
grounds that the manufacturer cannot guarantee the design.

The ESPRESSO algorithm is an example of a HEURISTIC program, that
is a program which uses approximate methods based on previous experience
to obtain a near optimal solution. The word heuristic comes from the Greek

Espresso minimization algorithm. 105

root “heurein”, to find, and heuristic programs and algorithms usually have
the characteristic that they are fast at finding a solution and easily modified
if a better method is found. In simple terms these heuristic programs can be
described as a suite of sophisticated rules of thumb.

The ESPRESSO algorithm is based on the cube notation used for rep-
resenting Boolean functions. Consider a Boolean function having n inputs.
The function can be considered to exist in n dimensional space with one axis
for each of the n inputs.

The values of the Boolean function can be considered to occupy points in
space corresponding to the values of 0 or 1 for each of the inputs.

A (trivial) Boolean expression of one variable can occupy either of the
points 0 or 1 in a 1 dimensional space as shown in Figure 17.1 (a). A Boolean
function of two inputs could occupy any of the four points as shown in Figure
17.1 (b). By extension, a Boolean expression of n inputs could occupy any
of the 2" vertices of an n dimensional cube. A real Boolean expression will
also normally occupy a number of vertices of the n dimensional cube.

110 11

10 1 10

101

010

011

(a) 0 1 (b) 00 01 (C) 000 001

Figure 17.1: This is a repeat of figure 7.6.

It is now possible to visualize a number of lower dimensional sub cubes
which will cover the occupied vertices of the n cube. some of these sub cubes
will be contained within other sub cubes of greater dimension. Two sub
cubes are considered to intersect if they have at least one common term or
vertex. A prime cube is a cube that cannot be expanded without including
a vertex for which the Boolean expression is off—a vertex corresponding to
a member of the off-set of minterms.

The operation of the ESPRESSO algorithm then consists of three funda-
mental steps.

1. Expand. A cube is expanded until no further expansion is possible
without including a vertex of the off-set, that is, the cube is expanded until it
is prime. This operation involves complementing each input, in turn, to test if
the new vertex is a member of the off-set or on-set of the Boolean expression.
At the end of this expansion process, we have a prime cover of the function

106 Fundamental Digital Electronics by Brian Lawless

such that no prime cube contains any other prime cube. However, a proper
subset of these prime cubes may also provide a cover. This is illustrated on
the Karnaugh map shown below. Each of the pairs is prime but it is possible
to select a smaller number of pairs which will give a full coverage.

AB AB AB AB
cD| o (M 1) o
co| ()) o
cp|l"o o o W
cD| 0o o (11 o0

A smaller subset of primes which would give full coverage is shown in the
Karnaugh map below. It is worth noting that, even in this simple system, it
is possible to select the set of primes which will give full cover in a number
of different ways.

AB AB AB AB
cDh| o M W o
cD|_1) 0
cpl o 0 o0 U
cD| o 0 (1) o0

2. Irredundant_Cover. This procedure within ESPRESSO attempts
to reduce the number of prime cubes to the minimum so that there are no
redundant prime cubes covering the Boolean function. This is essentially the
step carried out in moving between the two Karnaugh maps shown above.

The primes are classified into relatively_essential cubes which cannot be
omitted without destroying the covering property and redundant cubes which
can be removed without destroying the covering property. This redundant set
can be partitioned into a totally redundant set and a partially redundant set
and a minimal irredundant procedure attempts to select a minimal coverage.

3. Reduce. The Expand and Irredundant_Cover procedures will give
a locally optimal solution which may not be the global optimum solution.
Remember that this is an NP-Complete problem where the number of solu-
tions is so large that it is not possible to test all solutions for optimality. The
Reduce procedure transforms a prime cover into a new cover by replacing
each cube by a smaller cube contained within it.

Espresso minimization algorithm. 107

These three procedures of Expand, Irredundant_Cover and Reduce are
iterated with different starting points until there is no further improvement in
the optimality of the reduction. The ESPRESSO command is then completed
by the preparation of a file which contains the optimum output configuration
for the Boolean function.

Now let us consider the actual operation of the ESPRESSO command
in the SIS program and take as an example, the minimization of the logic
system for which the Karnaugh map is shown below.

AB AB AB AB
CD| 0 0 1 1
CD| 0 0 0
CD| 0 1 0
cp| 1) o (1 (1

This Karnaugh map can be expressed as an input file for the SIS program
by putting it into the PLA format (Programmable Logic Array) as shown in
the file below which has been called blexptl. Note that the comments within
the file have been added to the listing afterwards and do not form part of
the input data to the program.

i 04 ;There are 4 inputs to the system.

.0 1 ;There is one output from the system.

1100 ;These are the values of ABCD for output 1.
1000
0101
0111
0010
1110
1010

N = T = = =N

The SIS system is then started and this input file is read in to the com-
puter by using the read_pla instruction. The ESPRESSO command is given
to minimize the logic system. The result of the minimization is read out
using the write_blif command to write the output to a Berkeley Logic Inter-
change Format (blif) file which is called blexptlo. The sequence of computer
instructions is shown below.

108 Fundamental Digital Electronics by Brian Lawless

sis

read_pla blexptl
espresso

write_blif blexptlo
quit

The minimized logic output is then available in the file called blexptlo
which is shown below. Again, the comments were inserted into the file after-
wards.

.model blexptl ;Name of the input file

.inputs v0 vl v2 v3 ;SIS names for A, B, C, D

.outputs v4.0 ;The first and only output

.names v0 v1 v3 [1] ;First Product term, ABD

011 1 ;ABD = 011 gives output 1

.names v0 v3 [2] ;Second Product term, AD

10 1 ;AD = 10 gives output 1

.names vl v2 v3 [3] ;Third Product term BCD

010 1 ;BCD = 010 gives output 1

.names [1] [2] [3] [4] ;0utput is product of 3 complements
000 1 ;having value 000 = 1

.names [4] v4.0 ;Complemented to give Sum of Products
01 ;by use of De Morgan’s Theorem

.end

We can now interpret this file as follows:
A.B.D is represented by lines 4 and 5
A.D is represented by lines 6 and 7
B.C.D is represented by lines 8 and 9
which gives the Boolean exprssion in lines 10 to 13:

Q= (AB.D)(AD)(B.CD)=AB.D+AD+BCD

Espresso minimization algorithm. 109

It frequently occurs that a logic system contains inputs or outputs which
do not affect the operation of the system. These inputs and outputs are called
dont-care states and are indicated by - instead of the 0 or 1. A Karnaugh map
which contains a dont-care output state is shown below and the corresponding
PLA format input file is also shown as blexpt2.

AB AB AB AB
CD| 0 0 \u 1/
CD| 0 0 0
CD| 0 1 0 0
cD(1 - /1 1)

The dont-care state in the bottom row of the Karnaugh map allows us to
have a quad across the bottom row.

i 04
.o 1
1100
1000
0101
0111
0010
1110
1010
0110 - ;This is the extra dont-care output.

T = = ==

When this input file is read into the SIS program and the ESPRESSO
instruction executed, the output file blexpt2o is obtained.

sis

read_pla blexpt2 ;New input file
espresso

write_blif blexpt2o ;New output file
quit

The commented listing of the output file, blexpt2o, is then:

110 Fundamental Digital Electronics by Brian Lawless

.model blexptl
.inputs vO v1 v2 v3
.outputs v4.0

.names v0 v1 v3 [2] ;Pair ABD = 011

011 1

.names v0 v3 [3] ;Quad AD = 10

10 1

.names v2 v3 [4] ;Quad CD = 10

10 1

.names [2] [3] [4] [5] ;Product of Complements of Products
000 1

.names [5] v4.0 ;when complemented

01 ;gives Sum of Products
.exdc

.inputs v0 vl v2 v3
.outputs v4.0

.names v0 vl v2 v3 v4.0
0110 1

.end

These examples are trivial but have the advantage that it is possible to
see the parallel operation of the Karnaugh map method and the ESPRESSO
system. It is not possible to use the Karnaugh map method on larger prob-
lems containing many inputs and many rows in the truth table statement of
the problem and also on problems which have a large number of simultane-
ous outputs from the logic system. A moderately large system might have
100 inputs and 30 outputs and would be easily handled by the SIS program.
The example below is smaller than this (because of space constraints on this
page) but it does illustrate the real power of the ESPRESSO instruction on
the SIS computer package. This example file is included with the SIS package
and is called alul.

The input file has 12 inputs and 8 outputs and the truth table has 19
rows which contain many dont-care inputs.

L1012
.0 8
—————— 0 10000000
————(Qm———— 0- 10000000
o P —— 10000000
_____ 1-----0 01000000

o

--—-0- 01000000

Espresso minimization algorithm. 111

—Q-————————— 01000000
______ 1-—--0 00100000
______ 0---0- 00100000
——Q-———— 00100000
_______ 1---0 00010000
_______ 0--0- 00010000
———Q-———————— 00010000
0---1---0--- 00001000
0---0----0-- 00001000
-0---1--0--- 00000100
-0---0---0-- 00000100
--0---1-0--- 00000010
--0---0--0-- 00000010
---0---10--- 00000001

When this file is processed in SIS the output file below is obtained in less
than 1 second of processing time on a Pentium PC.

.model alul

.inputs vO vl v2 v3 v4 v5 v6 v7 v8 v9 v10 vi1l

.outputs v12.0 v12.1 v12.2 v12.3 v12.4 v12.5 v12.6 v12.7
.names v3 v7 v8 [8]

010 1

.names v0 v4 v9 [9]
000 1

.names vl v5 v9 [10]
000 1

.names v2 v6 v9 [11]
000 1

.names v0 v4 v8 [12]
010 1

.names vl v5 v8 [13]
010 1

.names v2 v6 v8 [14]
010 1

.names v7 v10 [15]
00 1

.names v4 vi1l [16]
10 1

.names v4 v10 [17]
00 1

112

Fundamental Digital Electronics by Brian Lawless

.names
10 1
.names
00 1
.names
10 1
.names
00 1
.names
10 1
.names
01
.names
01
.names
01
.names
01
.names
000 1
.names
01
.names
000 1
.names
01
.names
000 1
.names
01
.names
000 1
.names
01
.names
00 1
.names
01
.names
00 1
.names

v5 vi1l [18]

v5 v10 [19]

v6 vi1l [20]

v6 v10 [21]

v7 vil [22]

v3 [23]

v0 [24]

vl [25]

v2 [26]

[16]
[27]
[18]
[29]
[20]
[31]
[15]

[33]

[17] [24]

v12.0

(191 [25]

vi2.1

[21] [26]

v12.2

[22] [23]

v12.3

(9] [12] [35]

[35]
[10]

[37]

vi2.4

[13] [37]

v12.5

[27]

[29]

[31]

[33]

Espresso minimization algorithm. 113

01

.names [11] [14] [39]
00 1

.names [39] v12.6
01

.names [8] [41]

01

.names [41] v12.7
01

.end

In this listing, the 8 outputs are named as v12.0 to v12.7. It is left as
an exercise for the reader to examine the listing and to identify the function
or meaning of each of the lines of output. It is also left as an exercise for
the reader to interpret each of the lines in terms of logic AND gates and OR
gates and to draw up a circuit diagram for the system. In this and larger
systems, the output BLIF file would be normally be used as the input file to
a program which would prepare the masks for the manufacture of the logic
array integrated circuit.

The version of the SIS program which was used in these examples is the
DOS port of the UNIX version of the SIS program and is to be found at the
net site http://www.mrc.uidaho.edu/vlsi/cad _free.html under the selection
SIS for DOS or at the net site

If you have any difficulty due to changes at these sites you could carry
out a net search for the terms UNIX and SIS and locate the new site.

17.1 References

Brayton, R.K., Hachtel, G.D., McMullen, C.T., Sangiovanni-Vincentelli,
A.L. (1984)
Logic Minimization Algorithms for VLSI Synthesis
Kluwer Academic Publishers

Rudell, R.L, Sangiovanni-Vincentelli, A. (1987)
Multiple- Valued Minimization for PLA Optimization
IEEE Transactions on Computer Aided Design, CAD-8, (5) 727-750,
1987

http://www.mrc.uidaho.edu/vlsi/cad free.html

http://www.ic.berkeley.edu

114

Fundamental Digital Electronics by Brian Lawless

17.2 Problems

17.1

17.2

17.3

17.4

17.5

Write a PLA format input data file for the logic system detailed in
Problem 14.1. Write the BLIF format output file which you would
expect to obtain from running the ESPRESSO command in SIS on
this input file. Then run the SIS program (if it is available) and com-
pare your expected results with the actual results. Account for any
differences.

Write the PLA input file which corresponds to the minterm expression:

Q = Ym(1,4,5,8,11,13,17)

Write the PLA format input file which corresponds to the minterm
expression:

Q =Ym(0,3,7,11,13) + d(2, 10, 15)

where the d(...) denote the dont-care input states.

Distinguish between the effect of dont-care states in the input and
dont-care states in the output of a PLA input file for SIS.

A seven segment display contains seven light emitting segments labelled
a to g as shown in Figure 17.2. Design the truth table for the logic
system, having 7 outputs, for a BCD to seven segment decoder which
has as its inputs the four outputs of a BCD counter and which will
display the numbers on the seven segment diplay. Prepare the PLA
input file suitable for submission to the SIS program.

a
.
o 1P
eldlc

Figure 17.2:

