Unit 15 Matrix minimization method.

e For the successful operation of the Karnaugh map technique, it is nec-
essary that:

— Adjacent terms in the map differ in only one literal.

— All possible adjacencies be discovered.

e The Karnaugh map method has to be modified for five inputs and does
not work for more than five inputs.

e An alternative mapping method for minimization of systems having
more than four inputs is presented.

The Karnaugh map technique depends on using the Gray code numbering
sequence to ensure that adjacent canonical terms in the Karnaugh map differ
in only one literal. This is a necessary but not sufficient condition for the
success of the method. It is also necessary that all possible adjacencies be
discovered by the technique. This second requirement is satisfied for four
literals, with two literals assigned to each map axis, as we have seen in Unit
14. When there are five or more literals, then there must be three or more
literals on one axis of the Karnaugh map and this new condition means that
all adjacencies are not necessarily revealed. To show this, we consider a single
row with three literals along the X axis as shown in the table below.

‘mgl‘lxo To2X1T9 33_2.’131.’)30 .’13_21‘137_0 1‘2.7711‘_0 ToT1T0 l‘zx_ll‘() 332.@1330‘
|0 1 0 0 0 0 1 0 |

This map does not show any adjacent pairs so no simplification seems
possible and yet it is easily seen that the terms T3.77.2¢ and x5.77.29, while
not adjacent, can be combined to give the simplification:

ToT1Xy + XoT1To = T1Xo

So we can now state that for, three or more literals on an axis of a Kar-
naugh map, the Gray code sequencing of terms does not reveal all possible
adjacent terms and therefore the simple form of the Karnaugh map technique
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may not reveal a maximally simple system. Essentially, we are trying to illus-
trate or portray an n dimensional problem of n literals on a two dimensional
Karnaugh map and it is not reasonable to expect that the portrayal and
resulting simplification will be complete and maximal.

There is therefore a problem associated with the problem of the mini-
mization of systems containing five or more variables which cannot be easily
handled by the Karnaugh map technique. There is also a range of problems
which are not large enough to justify the use of the more powerful algorithms
such as the Quine-McCluskey, the Espresso or the BDD methods (which will
be discussed in later Units) and computer packages based on these algo-
rithms which are designed for handling large systems. What is required is a
pencil and paper method of getting reasonable and quick but not necessarily
optimum solutions to medium sized minimization problems.

The following paper and pencil method is suggested for the minimization
of Boolean expressions containing up to about ten inputs.

Consider the set of decimal numbers from 0 to 63, spaced linearly along a
piece of string. Then fold the string into four and form a number array with
positions as shown in the figure.

0 31 /\ 32 63

15 16 47 48

N

Figure 15.1: Folded ordering of table positions.

The following algorithm is used for generating a table for use in sim-
plifying Boolean minterms. Take the minterm number and convert it from
decimal to binary. Treat this binary number as a Gray code number and
convert it from Gray to binary using the algorithm described in Figure 7.5
(b). Convert the resulting binary to a decimal number and write the original
minterm number in this position in the table.

For instance, minterm number 55 is 110111 in binary. Treat 110111 as
a Gray code and convert it to binary using Figure 7.5(b) to obtain 100101.
Convert binary 100101 to decimal to obtain 37. Locate the 37th position
in the folded table formed as shown in Figure 15.1 and write 55 into that
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position. This is shown in the table below. The positions of the other
minterms are similarly calculated and the complete table is prepared. This
table can then be reproduced and used by circling the minterm numbers
and searching for pairs, quads etc as in the Karnaugh map method. (See
Appendix C)

0 16 || 48 32
1 1749 33
3 19|51 35
2 18|50 34
6 22|54 38
7 23|55 39
5 21|53 37
4 20| 52 36
12 28 || 60 44
13 29 || 61 45
15 311 63 47
14 30 | 62 46
10 26 || 58 42
11 27 || 59 43
9 25|57 41
8 24|56 40

The advantage of this method over the Karnaugh map method is that it
can be used for systems having more than four inputs. In this example, we
have six inputs but we can handle more if necessary. The only requirement is
that we have a preprepared table with the location of the minterms marked
on it. Thus for a system with n inputs we have a table with 2" entries.

Now take as an example a function of six variables specified by the
minterm list

f1($5,l'4,$3,.’l?2,371,l’0) = Em(5,6,12,21,26,27,30,31,
37,44, 45,46, 47,53, 58, 62)

Make a copy of the map table for six inputs and circle the minterms which
appear in the minterm list as shown.
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0 1648 32
1 17|49 33
3 19|51 35
2 18|50 34
(6) 2254 38
00| ©
4 20|52 36
12 2860 (44

13 29| 61 (45)

15 si% 63 (A7)
14 (3062 @)
10 26)[|(68) 42

11 @759 43
9 25|57 41
8 24|56 40

Pairs of terms occur symmetrically on either side of lines dividing the
table into halves, quarters or eights. Thus the minterms 58 and 62 form a
pair. The terms 12 and 44 also form a pair. The terms 49 and 57 would have
also formed a pair if they had had occurred in the minterm list. However,
terms 55 and 59 could not form a pair because they are not symmetrically
spaced.

It can also be seen that the terms (31, 30, 26, 27) form a quad as do (5,
21, 53, 37), (30, 62, 26, 58) and also (44, 45, 47, 46). Note that a group of
four such as 49, 51, 50 and 54 could not form a quad because they are not
spaced symmetrically about a quartering line but that 49 and 51 could form
a pair as could 50 and 54. The minterm 6 does not combine with any other
minterm.

When the minterms in the minterm list are grouped and quads and pairs
simplified, the function f; reduces to:

f1($5,$4,$3,.7)2,$1,$0) = Zm((5a21a53’37)’(31,30’261 27)a
(30,62, 26, 58), (44, 45, 47, 46), (12, 44), 6)
= T3%2T1%0 + T5T4T3%1 + TaT3T1Tg +

T5T4T3Lo + T4T3L9T 1Ly + T5L4T3L2L1 T

This tabular map can be extended to the case of 7 inputs by preparing a
larger mapping table as shown:



Matriz minimization method. 95

16 || 48 32| 96 112 || 80 64
17 149 33| 97 113 | 81 65
19 151 35| 99 115 | 83 67
18 |50 34| 98 114 || 82 66
22 || 54 38 || 102 118 || 86 70
2355 39 || 103 119 | 87 71
21 || 53 37 || 101 117 | 8 69
20 || 52 36 || 100 116 | 84 68

28 || 60 44 || 108 124 | 92 76
29 || 61 45 || 109 125 | 93 77
31 63 47 || 111 127] 95 79
30 || 62 46 || 110 126 | 94 78
26 || 58 42 || 106 122 | 90 74
27 159 43 || 107 123 || 91 75
25 || 57 41 || 105 121 || 89 73
24 | 56 40 || 104 120 | 88 72

0O D EE oo oo w o

The valuable feature of this alternative mapping method is that the terms
which can be readily combined are revealed as a pattern on the map and can
be easily identified. The technique can be applied to functions which have 7
and more inputs whereas the Karnaugh map method is limited to 5 inputs.
The technique is also adapted to direct use of the minterm list presentation
of the truth table which simplifies the preparation of the map.

There are a number of standard methods which have been applied to
this Boolean simplification problem and for which commercial computer pro-
gram packages are available. These are the Quine- McCluskey method and
the Espresso method but, as in all theoretically interesting problems, many
other methods have been developed and explored such as methods based on
Reed-Muller simplification, Binary Decision Diagrams, Genetic Algorithms,
cellular automata and others. We will discuss these methods in the next few
units because the techniques used have more general applications that simply
the Boolean minimization problem.

15.1 References

Maxfield, C.(1996), A Reed Muller extraction utility, EDN (Electronic De-
sign Notes), April 11, 121-135
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15.2 Problems

See Appendix C for blank minimization maps.
15.1 Use the method described in this unit to minimize the function
f(zs, e, 21, 29) = ¥m(1,5,7,9,12,13,14)

Verify that you obtain the same simplified function that was obtained
in Example 14.1.

15.2 How many columns will there be in the table for the case of n different
inputs?

15.3 Simplify the expression:

f1 (.’133, To,T, .’130) = Em(l, 2, 3, 6, 8, 10, 12, 13, 14)

15.4 Simplify the expression:

f2($5, Ty4,T3,T2,T1, .To) = Em(19, 23, 27, 31, 55, 59, 63)

15.5 Simplify the expression:

fs(xs, T4, T322, 21, 70) = Xm(5,13,16,17,18,19,21, 25,27, 29, 33, 37,
45, 48,49, 50, 51, 53,57, 59, 61)

15.6 Simplify the expression:
fs(ze, x5, T4, 3, T2, T1,9) = ¥m(3,7,11,13,19,27,39,47,49, 53, 67,

71,75,79,83,91,103, 111,113, 117)

15.7 Construct the table, similar to that on page 92, which would be suitable
for use in minimizing expressions having 8 inputs, that is minterms
between 0 and 255. Use the table to minimize the expression

f3($7, Loy X5y L4y, T3, T2, L1, $0) = Em(25, 67, 74, 75, 106, 153, 171, 195, 203)



