• The minterm list contains the numbers of the rows of the truth table for which the output Q=1 and represents a Sum of Products of canonical form.

• The Maxterm list contains the numbers of the rows of the truth table for which the output Q=0 and represents a Product of Sums of canonical form.

• The Principle of Duality states that the dual of a function is obtained by exchanging operators and identity elements, that is exchange + for . and A for \overline{A} .

A truth table for n literals contains 2^n rows. We need a more compact format.

\overline{n}	A	B	C	\overline{Q}
0	0	0	0	1
1	0	0	1	0
2	0	1	0	1
3	0	1	1	0
4	1	0	0	1
5	1	0	1	0
6	1	1	0	0
7	1	1	1	1

The minterm list is then the list of the numbers of the canonical product terms for which the output is Q=1.

\overline{n}	A	B	C	\overline{Q}
0	0	0	0	1
1	0	0	1	0
2	0	1	0	1
3	0	1	1	0
4	1	0	0	1
5	1	0	1	0
6	1	1	0	0
7	1	1	1	1

Minterm list:

$$f(ABC) = m_0 + m_2 + m_4 + m_7$$

= $\Sigma m(0, 2, 4, 7)$

n	A	B	C	\overline{A}	$+ \overline{B}$	•	\overline{C}	_
0	0	0	0	_	1		1	1
1	0	0	1	1	1		0	0
2	0	1	0	1	0		1	0
3	0	1	1	1	0		0	1
4	1	0	0	0	1		1	0
5	1	0	1	0	1		0	1
6	1	1	0	0	0		1	0
7	1	1	1	0	0		0	0

Minterm list (Sum of Products) is:

$$f(ABC) = \Sigma m(0,3,5)$$

and the Maxterm list (Product of Sums) is:

$$f(ABC) = \Pi M(1, 2, 4, 6, 7)$$

Use DeMorgan's theorem to convert from minterm to Maxterm.

$$\overline{\overline{A}.B.\overline{C}} = \overline{\overline{A}} + \overline{B} + \overline{\overline{C}} = A + \overline{B} + C$$

So that we then obtain the expression for the terms in the truth table for which the output is 0.

A noncanonical expression:

$$Q = A.B + \overline{A}.B.\overline{C}$$

is expanded by using the identities:

$$A + \overline{A} = 1$$
 and $A.\overline{A} = 0$

$$Q = A.B.1 + \overline{A}.B.\overline{C}$$

$$= A.B.(C + \overline{C}) + \overline{A}.B.\overline{C}$$

$$= A.B.C + A.B.\overline{C} + \overline{A}.B.\overline{C}$$

$$= \Sigma m(7,6,2) = \Sigma m(2,6,7)$$

Similarly a Product of Sums could be expanded:

$$Q = (A+B)(\overline{A}+C)$$

$$= (A+B+0)(\overline{A}+0+C)$$

$$= (A+B+C.\overline{C})(\overline{A}+B.\overline{B}+C)$$

$$= (A+B+C)(A+B+\overline{C})$$

$$(\overline{A}+B+C)(\overline{A}+\overline{B}+C)$$

where the expansion:

$$(A + B + C\overline{C}) = (A + B + C)(A + B + \overline{C})$$

is obtained by the application of P2 of Unit 9.

n	A	B	C	\overline{A}	$+ \overline{B}$	$+ \overline{C}$	Q
0	0	0	0	1	1	1	0
1	0		1	1	1	0	0
2	0	1	0	1	0	1	1
3	0	1	1	1	0	0	1
4	1	0	0	0	1	1	0
5	1	0	1	0	1	0	1
6	1	1	0	0	0	1	0
7	1	1	1	0	0	0	1

The Maxterm list is obtained from the sum terms in the Boolean product of sums and the table

$$Q = (A + B + C)(A + B + \overline{C})$$
$$(\overline{A} + B + C)(\overline{A} + \overline{B} + C)$$
$$= \Pi M(0, 1, 4, 6)$$