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Applied 
Spectroscopy 

Recommended Reading: 
Banwell and McCash Chapter 3 

Atkins Physical Chemistry Chapter 16 



What is it? Vibrational spectroscopy detects transitions 
between the quantised vibrational energy levels 
associated with bond stretching and/or bond angle 
bending in molecules. 

How do we do it? Transitions are observed by measuring 
the amount of  infrared radiation that is absorbed or 
emitted by vibrating molecules in solid, liquid or gas 
phases. 
Why do we do it? A knowledge of  the vibrational level 
spacings gives us the value of  the stretching (or 
bending) force constants which characterise the 
stifness of  a bond, allows us to estimate the bond 
dissociation energy, and gives us a means of  identifying 
characteristic functional groups of  atoms within large 
molecules. 

Introduction 



Vibrational Spectroscopy 

Chemical bonds are not rigid, the 
atoms in a molecule vibrate about 
an equilibrium position. 

The force required to stretch or 
compress the bond length to r is 
proportional to (r-req)  

The energy required to stretch the 
bond is  
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Just like a spring which obeys Hooke’s Law. 

where x = (r-req)  

k = force constant of  bond,    
units N.m-1  
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r 
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Potential Energy Curve 

Connection between shape of  potential 
energy curve and strength of  bond k.  
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Potential energy curve is approximately 
parabolic and the force constant k is 
related to the potential by  
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Vd HCl, k = 516 Nm-1,  
è weak.  

CO, k = 1902 Nm-1, 
è strong.  



Quantum Approach 
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Where μ is the effective (reduced)  mass of  the molecule  
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From Quantum II notes we know that the wavefunctions are given by 
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where n is the vibrational quantum number,  n = 0, 1, 2, 3, …  

The energy levels are quantised and are given by  
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Schrodinger Equation for 
Simple Harmonic Oscillator 



Hermite Polynomials and SHO wavefunctions 



Wavefunctions 
First four wavefunctions and corresponding probability distributions 
for the SHO potential. 



Dipole moment of  a vibrating polar diatomic molecule which is fixed 
and aligned in space   

Selection Rules  



Selection Rules  

δ+ δ_ 

Dipole 
moment 

Time 
Molecules may interact with an electro-
magnetic field through their electric dipole 
moments.  

If  they possess an oscillating dipole moment 
then they can absorb or emit photons.   

An oscillation is infra-red active if  it 
changes in magnitude or direction when 
the atoms are displaced relative to each 
other   

Selection Rules: 

1. Dipole moment must change as molecule 
oscillates. 

2. Δn = ± 1             +1 è absorption of  photon 

       -1 è emission of  photon 
Examples: 

  HCl ✓ ,   HI ✓ ,   H2O ✓ ,   O2 X,     H2 X,  ... 



Justification for Selection Rules  I  
Selection Rules arise from the transition dipole moment    if ˆ φµφ
Consider a one dimensional oscillator (e.g. diatomic molecule). The 
dipole moment arises from two partial charges ±δq  separated by a 
distance R = Re + x.  Then   

qx̂ˆqx̂qRqR̂ˆ e δµδδδµ 0 +=+==

Where μ0 is the dipole moment operator when the atoms are at their 
equilibrium separation.  Then, assuming that the initial and final 
states are different (i ≠ f),    

ifif0if x̂qδμˆ φφφφφµφ +=
First term is zero because the oscillator states are orthogonal. So the 
transition moment is     

ifif x̂qˆ φφδφµφ =

and because      

dx
μd

q =δ we can write the transition moment more 
generally as :     
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the right hand side is zero unless there is a varying dipole moment.    
So there is no absorption unless the molecule has a changing dipole 
moment. 



Justification for Selection Rules  II  
The specific selection rule is determined by considering the value of  
the matrix element  

if x̂ φφ
We write out the matrix element explicitly in terms of  the Hermite 
polynomials and evaluate the integral  
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To evaluate the integral we use the recursion relation  
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This turns the matrix element to   
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Now using the orthogonality condition   
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We see that the first integral is zero unless nf = ni - 1  and the 
second integral is zero unless nf = ni+1.  

So the transition dipole moment is zero unless Δn = ± 1.  

A Third Selection Rule  
At this point we note that there is no angular momentum associated 
with the radial vibrational motion of  the molecule. Since angular 
momentum must be conserved when a photon is emitted or absorbed 
this implies that all vibrational transitions must be accompanied by a 
change in the rotational quantum number J.  

So in reality all vibrational spectra are due to vibrational-rotational 
transitions in the molecule with a simultaneous change in the J 
quantum number.    

We will come back to this point later!!! 



Energy Levels in Harmonic Oscillator  
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Vibrational energy is quantised  

Vibrational terms of  a molecule G
(n) = energies of  vibrational states 
expressed in wavenumbers. 
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Example: 1H35Cl has a force 
constant of  519 cm-1. Find its 
oscillation frequency  ν0. 
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We can excite the  1H35Cl 
vibration with radiation of  this 
wavelength è infra-red 

1
0 cm 2990~ −=⇒ ν



0ν~ cm-1 

G(0) 

G(2) 

G(1) 

G(3) 

G(4) 

Vibrational Spectrum (Diatomic)  
From the selection rules we see that the 
wavenumbers of  the allowed transitions 
are given by   
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All allowed transitions occur at the same 
frequency υ only one line in the 
spectrum. Position of  line depends on       
and therefore k and μ.    

0ν~

At room temperature kT ≈ 200 cm-1.  

For most molecules 

therefore at room temp only the lowest 
vibrational state will be occupied. 

è dominant spectral transition will be  

  n  = 0 è n = 1.   

 = Fundamental transition  

1cm 200~ −>0ν



Population of  Energy Levels  
In diatomic molecules the vibrational transitions typically have 
wavenumbers in the range 500 to 2000 cm-1  (~0.05 to ~ 0.25 eV). 

The populations of  the vibrational energy levels are given by the 
Boltzmann distribution. 
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(Note that vibrational levels are non-degenerate so there is no 
degeneracy factor). 

At room temperature (300),  kT  ~ 1/40 eV   è  kT /hc ~200cm-1 this is 
less than the typical separation of  the energy levels  

So at room temperature almost all of  the molecules will be in the 
ground (n = 0) state and the predominant transition is adsorption 
from the n = 0 to n = 1 state.  



Example HCl  
Example: 1H35Cl has a fundamental vibration at  
find the relative population of  the n = 1 vibrational state at room 
temperature (300K) and at (5000K) 

1
0 cm 2990~ −=ν

At room temperature kT/hc = 200 cm-1.   

At 5000K  kT/hc = 3475 cm-1.  

From Boltzmann distribution 
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At 300K only 3 in 10 million 
molecules are in the n = 1 vib. 
state the rest are in the ground 
(n = 0) state. 
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T = 5000 K 

At 5000 K about 43 % of  the 
molecules are in the n = 1 state. 
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The Anharmonic Oscillator 
Real molecules do not behave like harmonic 
oscillators. 

•  The Harmonic Oscillator does not 
dissociate; it can have n = ∞ but (r-req) = ∞ , 
does not make physical sense. 

•  In real molecules the vibrational energy 
levels get closer together as E increases. 

 
In real molecules the harmonic oscillator  
approximation breaks down.  

Must consider additional terms in the 
Potential Energy. 
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Include Anharmonic terms in potential. 



The Morse Potential 
Use an empirical function that is a good 
representation of  the true potential curve. 

The Morse potential is one such function. 
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Deq is the depth of  the Morse potential 

Note that the Dissociation Energy D0 is 
given by 
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Units of  D0 and Deq are 
energy, J or eV 

Note energy levels get 
closer together as n 
increases 



The Morse Potential 
A way of  seeing the physics behind the Morse potential is to expand it 
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The Morse Potential 
Using the fact that 
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expanding the exponential term in the Morse potential and collecting 
terms gives 
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For the Harmonic Oscillator potential V(r) = 1/2k(r-req)2. So we note that 
for small values of  |r-req|, the cubic and higher terms will be small, the 
first term will dominate and we return to the harmonic oscillator with  

2
eqMorse aD2k ≈

Morse potential = Harmonic Oscillator potential with cubic and higher 
anharmonic terms added to make the shape more realistic. 
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The Morse Potential 
We can solve the Schrodinger equation with the Morse potential to find 
the allowed energy levels (eigenvalues). Difficult but can be done 
analytically. 

Energy levels given by  oe
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The vibrational terms 
are given by  
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χe the Anharmonicity constant, depends on molecule, small correction 
factor ≈ 0.01 
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The number of  vibrational states is now finite, n = 0,1,2,…. nmax . 
Above nmax the molecule dissociates (breaks apart) 



Selection Rules for Anharmonic Oscillator 
Selection Rules: 

1. Dipole moment must change as molecule oscillates. 

2. Δn = ±1, ±2, ±3,  … all transitions allowed but only the ±n = ±1 
transition is strong. 

 

Fundamental Transition  
( ) ( )e01n 0n 21~0G)1(G~ χνν −=−==→=

First OvertoneTransition  
( ) ( )e02n 0n 31~20G)2(G~ χνν −=−==→=

Second OvertoneTransition  

( ) ( )e03n 0n 41~30G)3(G~ χνν −=−==→=
Can calculate energies of 
higher overtone transitions, 
intensity decreases rapidly for 
higher overtones.  cm-1 

fund 

1st  
2nd  

3 . C o n s e rvat i o n o f  a n g u l a r 
momentum, so really we have 
vibrational-rotational transitions. 



Maximum vibrational quantum number 
In general the transition energies are given by   

( )1nν~2ν~εεε e00n1nn +−=−= + χΔ
This shows that as the vibrational quantum number n increases the 
energy levels get systematically closer together and go to zero at the 
dissociation limit. Another way of  seeing this is to recognise that the 
energy function is a parabolic function of  n whose limit lies at Deq.   

 Taking the derivative with respect to n and setting it equal to zero gives 
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the maximum vibrational quantum number. 



Example: Overtone bands in HCl 
The infrared spectrum of  HCl has vibrational lines at 2886cm-1 

(strong, fundamental), 5668 cm-1 (weak, 1st overtone ) and 8347 
cm-1 (very weak, second overtone). Find   χe  and  0

~ν
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From data given we have  

Three equations, two unknowns, can solve equations to find  

1
0 cm  2990~ −=ν

0174.0e =χ

= vibrational frequency of  simple harmonic oscillator  0
~ν

Note that χe is dimensionless  



Hot Bands 
At low temperature only the n = 0 state has a significant population, so 
only transitions from n = 0 occur. However as temperature increases 
then some of  the molecules will be in the n = 1 state and absorption 
transitions out of  the n = 1 state will be observed. These are called 
Hot Bands and their intensities depend on the temperature of  the gas. 

First Hot BandTransition  

( ) ( )e02n 1n 41~1G)2(G~ χνν −=−==→=

cm-1 

fund 

1st  
2nd  

1st Hot 
Band  

Second Hot BandTransition  
( ) ( )e03n 1n 51~21G)3(G~ χνν −=−==→=



The Birge-Sponer Plot 
When several vibrational transitions are 
detectable in a spectrum then a graphical 
technique called a Birge-Sponer plot may be 
used to determine the dissociation energy of 
the molecule.  

The basis of  the Birge-Sponer plot is that the 
sum of  successive intervals ΔG from the 
zero-point energy to the dissociation limit is 
the Dissociation energy. 
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n

21n23210 G....GGD ΔΔΔ

The area under the plot of  ΔGn+1/2 against n
+1/2 is equal to this sum and therefore to D0 
(see plot on next page). 

The plot decreases linearly when only the Χe 
term is taken into account and then Do can be 
found by extrapolation. In real systems the 
plots are nonlinear and therefore overestimate 
D0. 



The Birge-Sponer Plot 



Example using the Birge-Sponer plot 
The observed vibrational transitions in H2

+ are observed at the 
following values: 

0 → 1 2191 cm-1

1 → 2 2046 cm-1

2 → 3 1941 cm-1

3 → 4 1821 cm-1

4 → 5 1705 cm-1

5 → 6 1591 cm-1

6 → 7 1479 cm-1

7 → 8 1368 cm-1

8→ 9 1257 cm-1

9→ 10 1145 cm-1

10→ 11 1033 cm-1

11→ 12  918 cm-1

12→ 13 800 cm-1

13→ 14 677 cm-1

14→ 15 548 cm-1

15→ 16 411 cm-1

Determine the dissociation energy of 
the H2

+ molecule. 

Birge-Sponer Method:  

Plot the line separations against n + 1/2, 
extrapolate linearly to the horizontal axis 
then measure the area under the curve 
(use formula for triangle or count the 
squares). 

(See Birge-Sponer plot  for this problem 
on next page). 



Birge-Sponer Method:  

The total area under the curve 
is 214 squares.  

Each square corresponds to 
100 cm-1, 

so the dissociation energy is 
21,400 cm-1. 

Dissociation energy of  H2
+ 


