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Recommended Reading:
Banwell and McCash Chapter 3
Atkins Physical Chemistry Chapter 16



Introduction
What is it? Vibrational spectroscopy detects transitions
between the quantised vibrational energy levels
associated with bond stretching and/or bond angle
bending in molecules.

How do we do it? Transitions are observed by measuring
the amount of infrared radiation that is absorbed or
emitted by vibrating molecules in solid, liquid or gas
phases.

Why do we do it? A knowledge of the vibrational level
spacings gives us the value of the stretching (or
bending) force constants which characterise the
stifness of a bond, allows us to estimate the bond
dissociation energy, and gives us a means of identifying
characteristic functional groups of atoms within large
molecules.




Vibrational Spectroscopy

Chemical bonds are not rigid, the
atoms in a molecule vibrate about

an equilibrium position. —r —
eq

The force required to stretch or

compress the bond length to r is

proportional to (r-r.,) ’ < >
The energy required to stretch the F

bond is r g

where x = (r-r,)
k = force constant of bond,
units N.m-1

1 1
E=§k(r—req)2=§kx2

Just like a spring which obeys Hooke’s Law.



Potential Energy Curve

Connection between shape of potential
energy curve and strength of bond k.
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Potential energy curve is approximately
parabolic and the force constant k is
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Quantum Approach
Schrodinger Equation for _ 72 9%y(x) 1

Tkl _
Simple Harmonic Oscillator 20 gx2 t5 kx“y(x)=Ey(x)
Where p is the effective (reduced) mass of the molecule
__mMim2
mq+mo

From Quantum Il notes we know that the wavefunctions are given by

2
W =NpHn(y)e ™" 2

where H_(y) are the Hermite Polynomials, and

y=— with o =

o 4> mk
The energy levels are quantised and are given by

1
En =(n+§)h0) w :\/E

where n is the vibrational qguantum number, n=0,1, 2, 3, ...



Hermite Polynomials and SHO wavefunctions
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Wavefunctions

First four wavefunctions and corresponding probability distributions
for the SHO potential.
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Selection Rules

i DO NN U |
JA B T T N T

equilibrium
dipole moment

vertical
component
of
molecular
dipole

time —

Dipole moment of a vibrating polar diatomic molecule which is fixed
and aligned in space



Selection Rules Time
A

Molecules may interact with an electro- 5 @
magnetic field through their electric dipole
moments.

If they possess an oscillating dipole moment
then they can absorb or emit photons.

An oscillation is infra-red active if it
changes in magnitude or direction when
the atoms are displaced relative to each
other

Selection Rules:
1. Dipole moment must change as molecule

900910
g

oscillates.

2.An=%1 +1 = absorption of photon
-1 = emission of photon

Examples:

Dipole

HCIlv/, HIv, HO/, O, X, H,X, ..
moment



Justification for Selection Rules |

Selection Rules arise from the transition dipole moment <(Pf \ ﬁ\ (pi>

Consider a one dimensional oscillator (e.g. diatomic molecule). The
dipole moment arises from two partial charges +5q separated by a
distance R = R_ + x. Then

N

=R3g =R5g+X5q =i + %39

Where Y, is the dipole moment operator when the atoms are at their
equilibrium separation. Then, assuming that the initial and final

states are different (i = f), <(Pf ‘m (Pi> — Ilo<(Pf ‘(Pi> + 5q<(pf ‘,“(‘ (Pi>

First term is zero because the oscillator states are orthogonal. So the
transition momentis <(Pf ‘m(m _ 5Q<(Pf ‘)A(‘ (Pi>

and because §q = d_” we can write the transition moment more

dx generally as: A d
(o5 [ 0i) = (of X <P|>[ di}

the right hand side is zero unless there is a varying dipole moment.

So there is no absorption unless the molecule has a changing dipole
moment.



Justification for Selection Rules ||

The specific selection rule is determined by considering the value of
the matrix element

(ot [X|oi)

We write out the matrix element explicitly in terms of the Hermite
polynomials and evaluate the integral

lof Rloj) = [NeHERNH; exp(— y2 )dy =a® [N¢Hs§N;H; exp(— y2 )dy
To evaluate the integral we use the recursion relation

1
yHn =nHp_4 +§Hn+1 H, — H,

This turns the matrix element to Hi — Hni

(0 @) 1 oo
= aszNi{ni J HneHn, e"p(‘ y2 )dy +5 | HngHn,, e"p(_y ‘ )dy }



Now using the orthogonality condition

(0@}

[ Ho Hn, . expl-y2 by - Of

— o0

if ng #n;
2"in!  ifns=n,

We see that the first integral is zero unless n;=n, -1 and the
second integral is zero unless n; = n;+1.

So the transition dipole moment is zero unless An=* 1.

A Third Selection Rule

At this point we note that there is no angular momentum associated
with the radial vibrational motion of the molecule. Since angular
momentum must be conserved when a photon is emitted or absorbed
this implies that all vibrational transitions must be accompanied by a
change in the rotational quantum number J.

So in reality all vibrational spectra are due to vibrational-rotational
transitions in the molecule with a simultaneous change in the J
quantum number.

We will come back to this point later!!!



Energy Levels in Harmonic Oscillator

Vibrational energy is quantised

2 u

Vibrational terms of a molecule G
(n) = energies of vibrational states
expressed in wavenumbers.

G(n)=E—"= net | _(n, 1 A
hc 2 | hc 2

where

’\‘; —i E U its: -1
0 211G u niks: cm

1 1.
Eo =§h(x)0 = G(O)=§v0

= Zero point energy

Example: 'H35Cl| has a force

constant of 519 cm-!. Find its
oscillation frequency v,.

n= 1x35 amu=1.61x1 0_27kg
1+ 35

_av_1 | 516 Nm~!
0 27 27\ 1.61x10~27kg

v

—9.0x1013Hz

And therefore

L= C 3x108m.s™"

v 9.0x1013sec™"
=3.3x10"%m
=3.3um
= Vg =2990cm™
We can excite the 1H35Cl|

vibration with radiation of this
wavelength = infra-red




Vibrational Spectrum (Diatomic)

From the selection rules we see that the ;

wavenumbers of the allowed transitions

are given by { u=S :
G(n+1)—G(n)=[(n+g)—(n+%)]'\70 =%p | { G(4)
All allowed transitions occur at the same =3 G(3)

frequency v only one line in the
spectrum. Position of line depends on 7V,
and therefore k and .

G(2)

Energy, kJ/mol

G(1)

At room temperature kT = 200 cm-.
For most molecules Vv > 200 cm™

therefore at room temp only the lowest
vibrational state will be occupied.

= dominant spectral transition will be | N
n=0"2n=1. | V() cm
= Fundamental transition

G(0)




Population of Energy Levels

In diatomic molecules the vibrational transitions typically have
wavenumbers in the range 500 to 2000 cm™ (~0.05 to ~ 0.25 eV).

The populations of the vibrational energy levels are given by the
Boltzmann distribution.

(Note that vibrational levels are non-degenerate so there is no
degeneracy factor).

At room temperature (300), kT ~1/40 eV = kT /hc ~200cm this is
less than the typical separation of the energy levels

So at room temperature almost all of the molecules will be in the
ground (n = 0) state and the predominant transition is adsorption
from the n =0 to n =1 state.



Example HCI

Example: 'H3°Cl has a fundamental vibration at 7y =2990 cm™"
find the relative population of the n = 1 vibrational state at room

temperature (300K) and at (6000K)

n=1
At room temperature kT/hc =200 cm. >
At 5000K kT/hc = 3475 cm". o 0
From Boltzmann distribution t n=0
T=300K T=5000 K
N+ AE hcvo 1 E hcvg
—=e - |= - — = _—— = —_—
b -on{-i oo ) | | (-8 o1
~1 -1
= exp| - 22209 |3 251077 —exp| = 2290CM_|_ 0 423
200cm 3475cm™"

At 300K only 3 in 10 million
molecules are in the n =1 vib.

state the rest are in the ground
(n = 0) state.

At 5000 K about 43 % of the
molecules are in the n = 1 state.




The Anharmonic Oscillator

Real molecules do not behave like harmonic
oscillators.

* The Harmonic Oscillator does not
dissociate; it can have n = oo but (r-r.,) = o,
does not make physical sense.

* In real molecules the vibrational energy
levels get closer together as E increases.

500

Energy, kdJimol

In real molecules the harmonic oscillator

approximation breaks down. 100

Must consider additional terms in the

Potential Energy. -

2
1 d°V
V(X)=2[2 X
dx

Include Anharmonic terms in potential.




The Morse Potential

Use an empirical function that is a good
representation of the true potential curve. S Itk £ }_,A:._
The Morse potential is one such function. | /
2 =
—alr-r
- / | e-
2 12 2 12 5 1/
Where a = L _ 2HV ch ¥ / -
2hcDeq 81“hcDeq | i
D, is the depth of the Morse potential \
A\ Y
Note that the Dissociation Energy D, is A
given by I
ho hcv
Dg=Dggq——- =Deq———
0= ea™ 5 €4 2 Note energy levels get
Units of Dy and D, are closer together as n

energy, J or eV increases



The Morse Potential
A way of seeing the physics behind the Morse potential is to expand it

% _ Deq [1 _e—a(r—rec| )}2 _ eq[e—Za(r—req))ge—a(r—req )}1}

Short range long range asymptote
repulsion term attraction term

1
3.5 4



The Morse Potential
Using the fact that

oo [ (_y N 2 3 4
e X=1+ Z(( X) ]:1_x+x - +X

— +....
n— n 2 6 24

expanding the exponential term in the Morse potential and collecting
terms gives
2 7

X—(QzDe [a(r—reqﬂ —{a[r—reqﬂ 3+ﬁ[a(r—reqﬂ 4;...

q

For the Harmonic Oscillator potential V(r) = 1/2k(r-r.,)*> So we note that
for small values of |r-r. |, the cubic and higher terms will be small, the
first term will dominate and we return to the harmonic oscillator with

Y0-eq 12 :

Put rhs = %2 Ky, X — KmMorse = 2Deqa

Morse potential = Harmonic Oscillator potential with cubic and higher
anharmonic terms added to make the shape more realistic.




The Morse Potential

We can solve the Schrodinger equation with the Morse potential to find

the allowed energy levels (eigenvalues). Difficult but can be done
analytically.

2
1 1
Energy levels given by Ep = (“"‘5}@0 —(“+§) Xehoe

\
with w, = \/E Y

Anharmonic correction

E, 1) 1¥%
Gn)=""=[n+_ [V, =[n+_ | %Y,
The vibrational terms hc 2 2

are given by _=[4 n+1 n+1
= Vo Xe 2 2

X. the Anharmonicity constant, depends on molecule, small correction
factor = 0.01 Vo a2,

The number of vibrational states is now finite, n =0,1,2,.... n_, -
Above n .. the molecule dissociates (breaks apart)




Selection Rules for Anharmonic Oscillator

Selection Rules:
1. Dipole moment must change as molecule oscillates.
2. An=1%1,%2, £3, ... all transitions allowed but only the n = +1

transition is strong.

3. Conservation of angular R LR ao === £-"
momentum, so really we have
vibrational-rotational transitions. /

Fundamental Transition
Vn=0—n=1 = G(1)- G(O) =Vp (1 - 2Xe)
First OvertoneTransition . / 0.
Vn=0—> n=2 = G(2)—G(0)= 2'\."O (1—3Xe) /
Second OvertoneTransition _
Vn=0—n=3 = G(3)—G(0)= 3V (1—4Xe) \ / )
Can calculate energies of ' r,A '
higher overtone transitions, fund

intensity decreases rapidly for
higher overtones.

\

Energy, kJimol
M
D




Maximum vibrational quantum number
In general the transition energies are given by
AEn =€ptq—€p = VO _ZVOXe (n+1)

This shows that as the vibrational quantum number n increases the
energy levels get systematically closer together and go to zero at the
dissociation limit. Another way of seeing this is to recognise that the
energy function is a parabolic function of n whose limit lies at D,.

zz—n+1 —n+12 Vv
n= 2 |0 2Xeo

Taking the derivative with respect to n and setting it equal to zero gives

dey n+%}xef\70=0

=5~
dn ©
solving gives the vibrational index associated with the dissociation limit

_ Vo 1 round down to the nearest integer to find n__,
2% evo 2 the maximum vibrational quantum number.

Np



Example: Overtone bands in HCI

The infrared spectrum of HCI has vibrational lines at 2886cm-"
(strong, fundamental), 5668 cm-! (weak, 1st overtone ) and 8347
cm (very weak, second overtone). Find x, and Vj

From data given we have

Fundamental :G(l)—G(O]= '\70(1—2)(6]:2886 cm—L
1st Overtone :G(z)—G[O) = 2?/’0[1—3)(6]:5668 cm—1

ond 0vertone=G(3)—G(O)=3~0[1—4xe]=8347cm—1

Three equations, two unknowns, can solve equations to find
Vo =2990 cm™"
re =0.0174

Vo = vibrational frequency of simple harmonic oscillator

Note that x, is dimensionless



Hot Bands

At low temperature only the n = 0 state has a significant population, so
only transitions from n = 0 occur. However as temperature increases
then some of the molecules will be in the n = 1 state and absorption
transitions out of the n = 1 state will be observed. These are called
Hot Bands and their intensities depend on the temperature of the gas.

First Hot BandTransition - /”L
Tnctsne2 =62)-GM)=To(-4x6) /
Second Hot BandTransition ? ; / o
Vn=1-n=3 =CG(8)-G(1)=279(1-5¢e) & 7 °°

|
\ |
LW 4

fund
1stHot .
Band "" 2"

cm
L |

>

1st
1




The Birge-Sponer Plot

When several vibrational transitions are
detectable in a spectrum then a graphical
technique called a Birge-Sponer plot may be
used to determine the dissociation energy of
the molecule.

The basis of the Birge-Sponer plot is that the
sum of successive intervals AG from the
zero-point energy to the dissociation limit is
the Dissociation energy.

DO = AG1/2 +AG3/2 Feeee = ZAGn+1/2
n

The area under the plot of AG, ., against n
+1/2 is equal to this sum and therefore to D,
(see plot on next page).

The plot decreases linearly when only the X,
term is taken into account and then Do can be
found by extrapolation. In real systems the
plots are nonlinear and therefore overestimate
D,.
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The Birge-Sponer Plot

\o\ Area = v(1¢-0)

Linear
extrapolation

True curve

IANA v+ ',



Example using the Birge-Sponer plot

The observed vibrational transitions in H,* are observed at the
following values:

01 2191 cm™
152 2046 cm™
2353 (1941 cm™
354 (1821 cm™
4—-5 |1705cm™
556 1591 cm™ Birge-Sponer Method:
657 |1479 cm™
7—8 1368 cm"’

Determine the dissociation energy of
the H,* molecule.

Plot the line separations against n + 1/2,
P extrapolate linearly to the horizontal axis
8—»9 1257 cm then measure the area under the curve

9—-10 1145 Cm: (use formula for triangle or count the
10— 11 1033 cm squares).

11-12 | 918 cm™
12— 13 |800 cm™ (See Birge-Sponer plot for this problem

13— 14 |677 cm” on next page).

14— 15 |548 cm™
15516 |[411cm™
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Dissociation energy of H,*

Birge-Sponer Method:

The total area under the curve
is 214 squares.

Each square corresponds to
100 cm™,

so the dissociation energy is
21,400 cm.



