

Rotational Spectroscopy

Recommended Reading:

- 1. Banwell and McCash: Chapter 2
- 2. Atkins: Chapter 16, sections 4 8

Aims

In this section you will be introduced to

1) Rotational Energy Levels (term values) for diatomic molecules and linear polyatomic molecules

- 2) The rigid rotor approximation
- 3) The effects of centrifugal distortion on the energy levels
- 4) The Principle Moments of Inertia of a molecule.

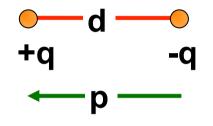
5) Definitions of symmetric , spherical and asymmetric top molecules.

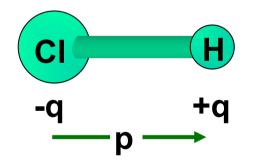
6) Experimental methods for measuring the pure rotational spectrum of a molecule

Microwave Spectroscopy - Rotation of Molecules

Microwave Spectroscopy is concerned with transitions between rotational energy levels in molecules.

Definition Electric Dipole: p = q.d



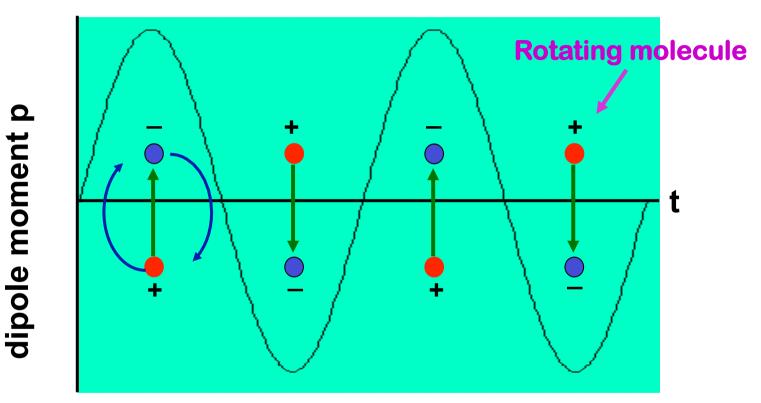


Most heteronuclear molecules possess a permanent dipole moment e.g HCI, NO, CO, H₂O...

Molecules can interact with electromagnetic radiation, absorbing or emitting a photon of frequency ω , if they possess an electric dipole moment p, oscillating at the same frequency

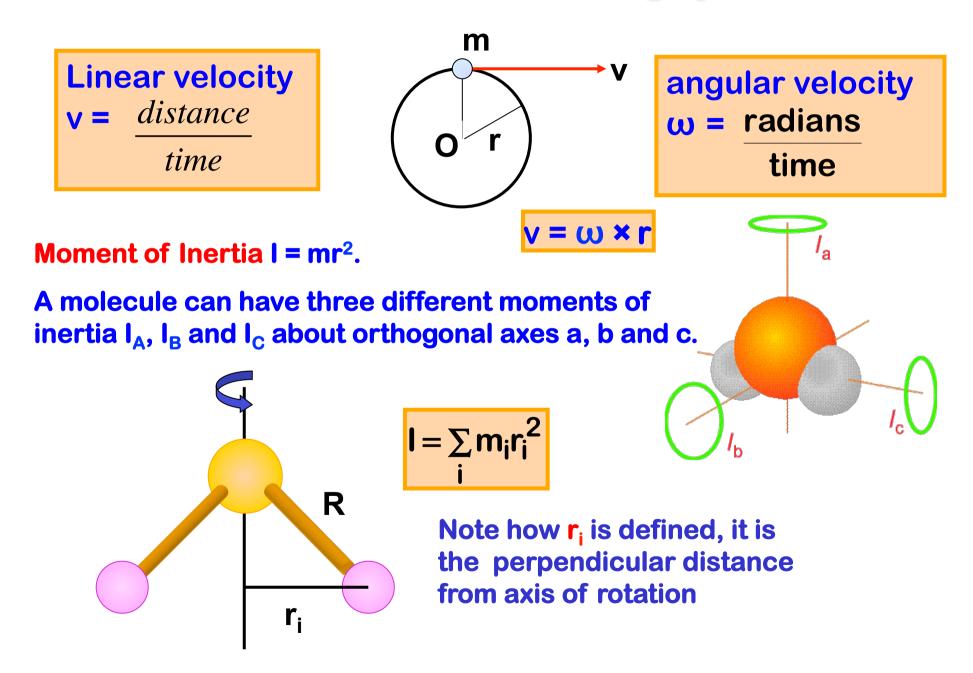
Gross Selection Rule:

A molecule has a rotational spectrum only if it has a permanent dipole moment.

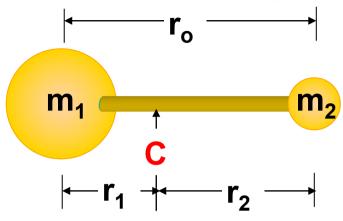


Homonuclear molecules (e.g. O_2 , H_2 , CI_2 , Br_2 do not have a permanent dipole moment and therefore do not have a microwave spectrum!

General features of rotating systems



Rigid Diatomic Rotors



 $I_B = I_c$, and $I_A = 0$.

C = centre of gravity.

Express I in terms of m_1 , m_2 and r_0 .

from
$$m_1 \cdot r_1 = m_2 \cdot r_2$$
 (1)
 $I = m_1 \cdot r_1^2 + m_2 \cdot r_2^2$ (2)
 $I = \frac{m_1 \cdot m_2}{m_1 + m_2} r_0^2 = \mu \cdot r_0^2$

Derive this expression

NOTE:

Units of I = kg.m².

μ = reduced or effective mass of the molecule

Energy and Angular Momentum

Angular momentum about axis a is $J_A = I_A \omega_A$

Energy of a body rotating about an axis 'a' with constant angular velo $E_a = \frac{1}{2} I_A \omega_A^2$

A body free to rotate about all three axes has a total rotational energy

$$\mathsf{E} = \frac{1}{2} \mathsf{I}_{\mathsf{A}} \omega_{\mathsf{A}}^{2} + \frac{1}{2} \mathsf{I}_{\mathsf{B}} \omega_{\mathsf{B}}^{2} + \frac{1}{2} \mathsf{I}_{\mathsf{C}} \omega_{\mathsf{C}}^{2}$$

And a total angular momentum given by

$$J^{2} = J_{A}^{2} + J_{B}^{2} + J_{C}^{2}$$
$$= (I_{A}\omega_{A})^{2} + (I_{B}\omega_{B})^{2} + (I_{C}\omega_{C})^{2}$$

Recall that J is a vector

Energy Levels of a Rigid Diatomic Rotor

For diatomic molecule $I_B = I_c = I$ and $I_A = 0$ so:

$$\mathsf{E} = \frac{1}{2}\mathsf{I}_{\mathsf{B}} \otimes_{\mathsf{B}}^{2} + \frac{1}{2}\mathsf{I}_{\mathsf{C}} \otimes_{\mathsf{C}}^{2} = \frac{\mathsf{J}_{\mathsf{B}}^{2}}{2\mathsf{I}_{\mathsf{B}}} + \frac{\mathsf{J}_{\mathsf{C}}^{2}}{2\mathsf{I}_{\mathsf{C}}} = \frac{\mathsf{J}^{2}}{2\mathsf{I}}$$

Can find quantum energy levels using Correspondence Principle:

$$J^2 \rightarrow J(J+1) \cdot \hbar^2 = \frac{J(J+1) \cdot h^2}{4\pi^2}$$

1. Rotational energy for a rigid diatomic rotor is quantised

$$\mathsf{E}_{\mathsf{J}} = \frac{\mathsf{J}(\mathsf{J}+\mathsf{1})\cdot\mathsf{h}^2}{8\pi^2\mathsf{I}}$$

Units: Joules

= <u>rotational quantum number</u>

Energy Levels of a Rigid Diatomic Rotor

2. Rotational energy is usually expressed in units of *cm*⁻¹.

Recall $\mathbf{E} = \mathbf{h}\mathbf{v} = \mathbf{h} \cdot \mathbf{c} \cdot \widetilde{\mathbf{v}}$ therefore $\widetilde{\mathbf{v}} = \varepsilon = \frac{\mathbf{E}}{\mathbf{h} \cdot \mathbf{c}}$ then

$$\varepsilon_{J} = \frac{E_{J}}{h \cdot c} = \frac{h^{2}J(J+1)}{4\pi^{2} \cdot 2I \cdot hc} = \frac{h}{8\pi^{2}Ic}J(J+1)$$
 cm⁻¹

B - Rotational Constant, units cm⁻¹

 $\varepsilon_{\rm J} = \mathbf{B} \cdot \mathbf{J}(\mathbf{J} + \mathbf{1})$ where **E**

$$\mathsf{B} = \frac{\mathsf{h}}{8\pi^2 \mathsf{lc}} = \frac{\hbar}{4\pi \mathsf{lc}}$$

 ϵ_J gives the allowed energy levels of the rigid rotor (in cm⁻¹).

B can be determined experimentally by spectroscopy

Notation: Rotational Term F(J)

The energy of a rotational state is normally reported as the Rotational Term, F(J), a wavenumber divided by hc

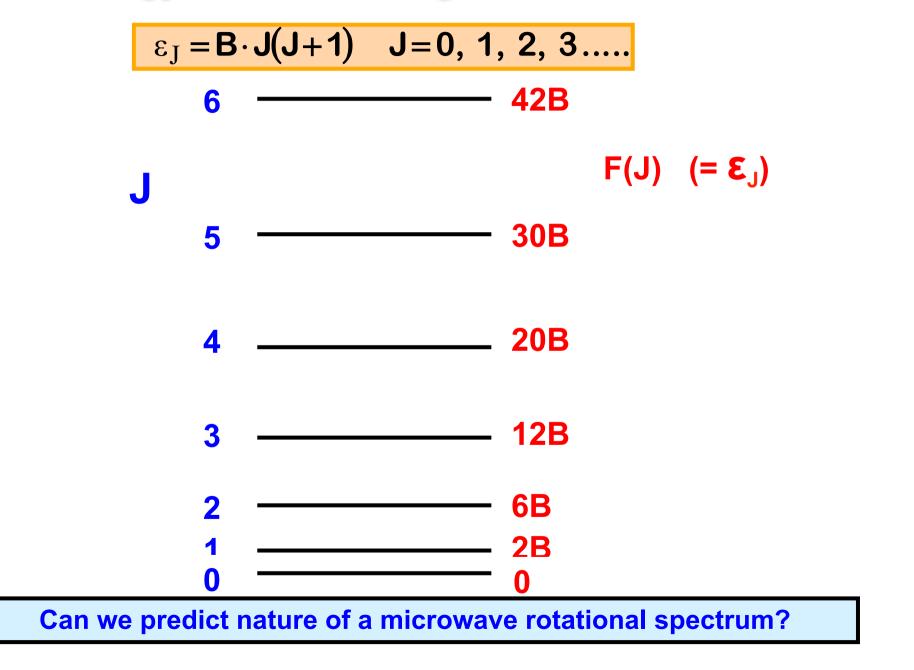
$$F(J) \equiv \varepsilon_{J} = \frac{\Delta E}{hc} = B \cdot J(J+1)$$

Ritz Combination Principle

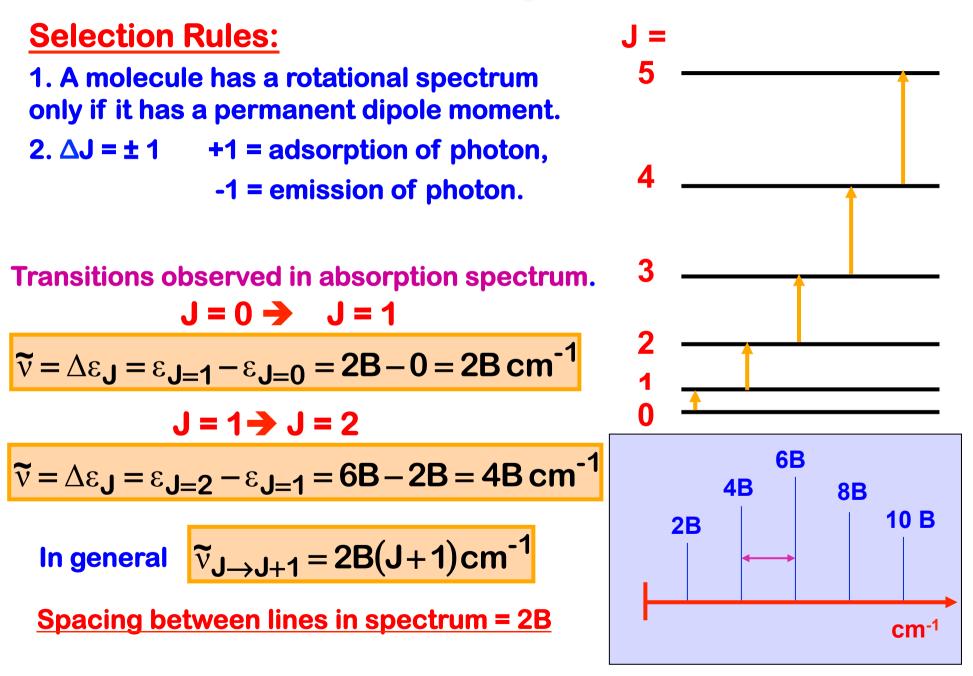
The wavenumber of any spectral line is the difference between two terms. Two terms T1 and T2 combine to produce a spectral line of wavenumber.

$$\widetilde{v} = \mathbf{T_1} - \mathbf{T_2} = \frac{\Delta \mathbf{E}}{\mathbf{hc}}$$

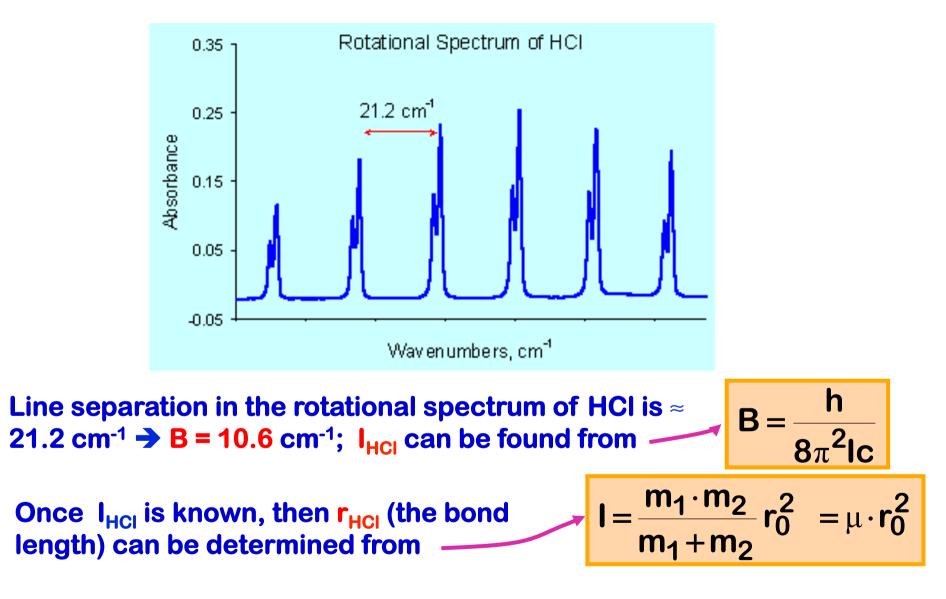
Energy Levels of a Rigid Diatomic Rotor



Rotational Transitions in Rigid Diatomic Molecules



Rotational Spectra of Rigid Diatomic Molecules



Need to know m_H and m_{CI} , but these are known and tabulated.

Summary so far:

1. Microwave spectroscopy is concerned with transitions between rotational energy levels of molecules

2. General features of rotational systems: I, ω , μ

$$I = \sum_{i} m_{i} r_{i}^{2} \qquad I = \frac{m_{1} \cdot m_{2}}{m_{1} + m_{2}} r_{0}^{2} = \mu \cdot r_{0}^{2}$$

3. Energy Levels of a rigid diatomic rotor

$$F(J) \equiv \varepsilon_J = B \cdot J(J+1)$$

$$\mathbf{B} = \frac{\mathbf{h}}{8\pi^2 \mathbf{lc}}$$

J = 0, 1, 2, ...; B = rotational constant, units cm⁻¹

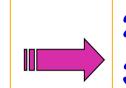
4. Selection rules: (1) permanent dipole moment,

(2) $\Delta J = \pm 1$ only

5. Spacing between lines of in rotational spectra of rigid diatomic molecules is constant and equal to 2B cm⁻¹.

Why is Rotational Spectroscopy important?

From pure rotational spectra of molecules we can obtain:



- bond lengths
 atomic masses
- 3. isotopic abundances
- 4. temperature

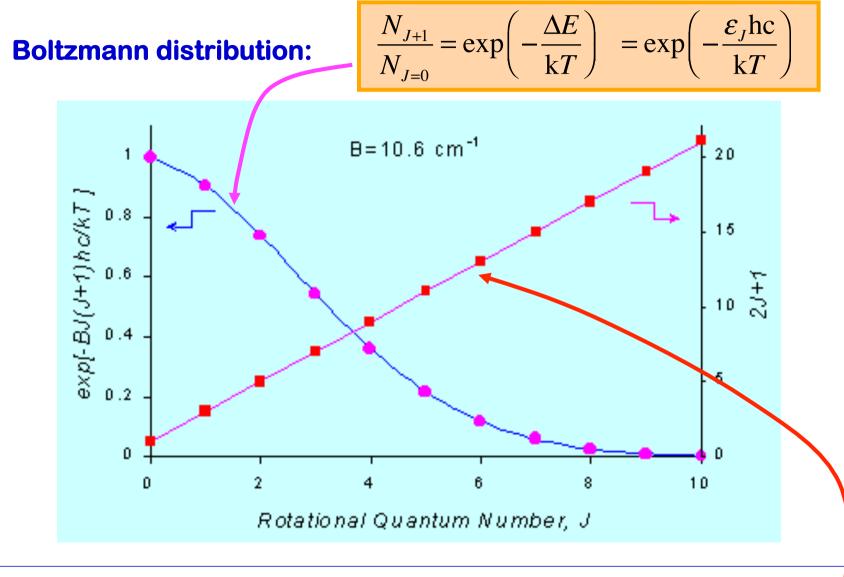
Important in Astrophysics: Temperature and composition of interstellar medium

Diatomic molecules found in interstellar gas:

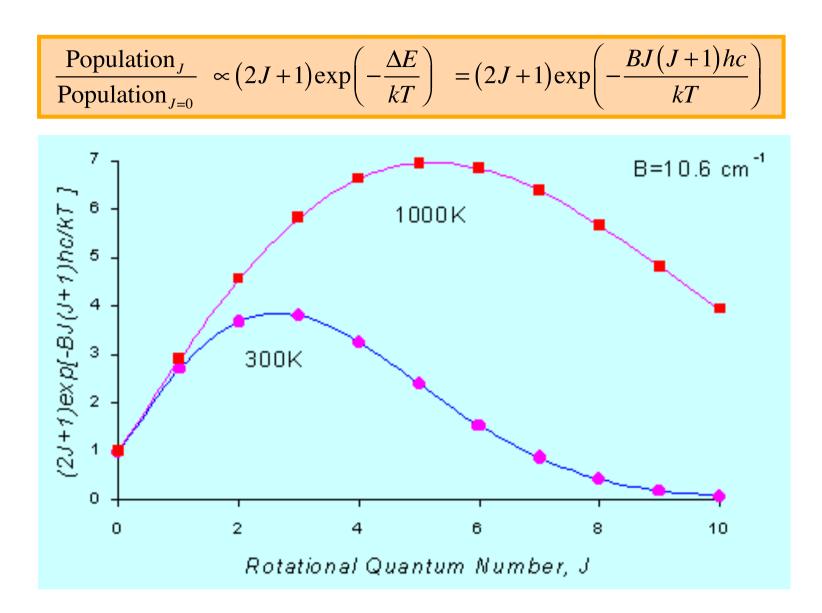
 H_2 , OH, SO, SiO, SiS, NO, NS, HCI, PN, NH, CH⁺, CH, CN, CO, CS, C_{2.}

S.Taylor, D. Williams, Chemistry in Britain, 1993 pg 680 - 683

Population of Rotational Energy Levels

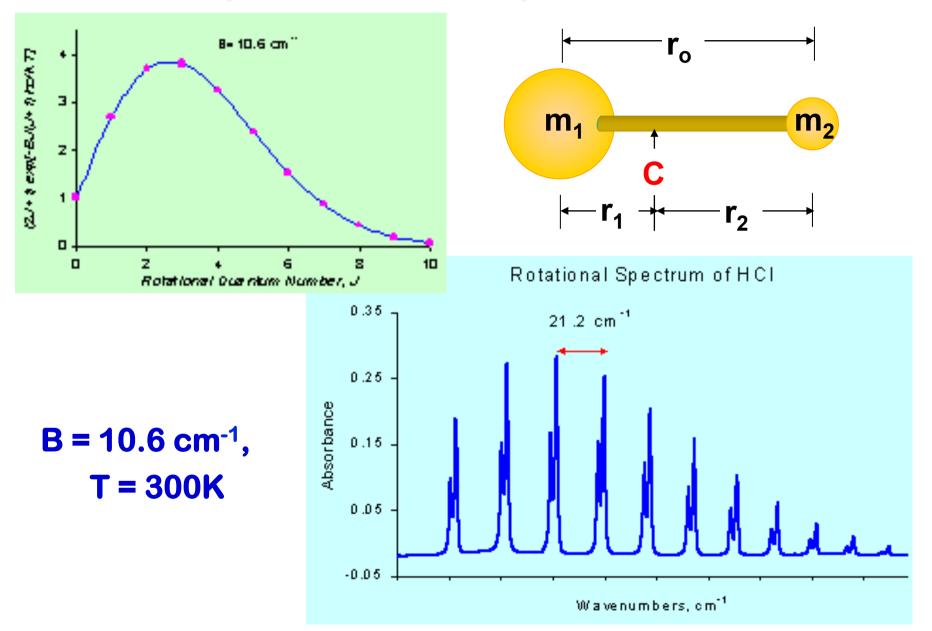


Orientation of the angular momentum L is quantised. This results in a (2J+1) degeneracy of the energy level

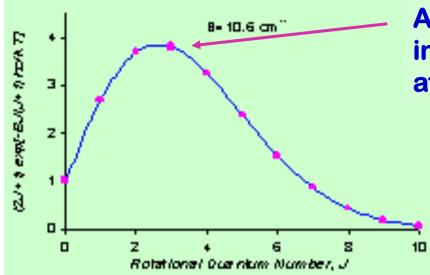


Spectral Line Intensity \propto Population

Example: Rotational Spectrum of HCI



Maximum Value of J



At what value of J will the intensity be a maximum, at a given temperature?

We can find the value of J_{max} by finding the value of J that maximises the population:

Population
$$\propto (2J+1)\exp\left(-\frac{\Delta E}{kT}\right) = (2J+1)\exp\left(-\frac{BJ(J+1)hc}{kT}\right)$$

Differentiate w.r.t. J and set equal to zero for a maximum. This gives

$$J_{max} = \sqrt{\frac{kT}{2hcB}} - \frac{1}{2}$$

must round this value to the nearest integer (J can only be an integer)

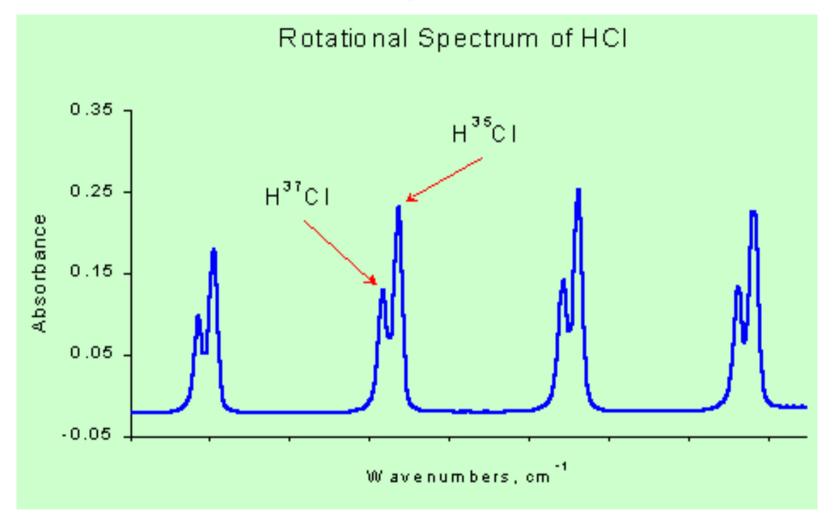
Bond lengths and Rotational Constants of some Diatomic Molecules

	r _o , Å	B, cm ⁻¹		r ₀, Å	B, cm ⁻¹
H_2^+	1.06	29.8	F ₂	1.42	0.88
H ₂	0.74138	60.8	Cl ₂	1.98	0.24
D ₂	0.74154	30.4	Br ₂	2.28	0.081
O ₂	1.21	1.44	HF	0.92	20.9
N ₂	1.10	2.00	нсі	1.27	10.6
со	1.13	1.93	HBr	1.41	8.46

Note effect of \mathbf{r}_0 and \mathbf{m} on the rotational constant **B**.

 $I \propto r_0$ and m and $B \propto 1/I$

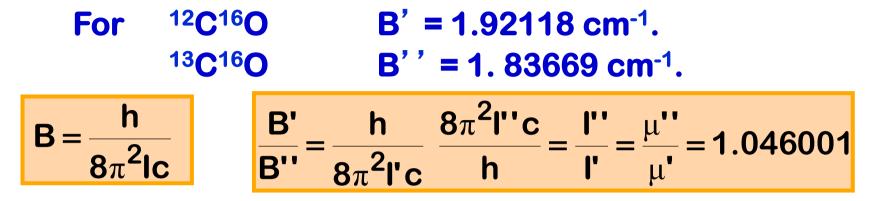
Effect of Isotope Substitution



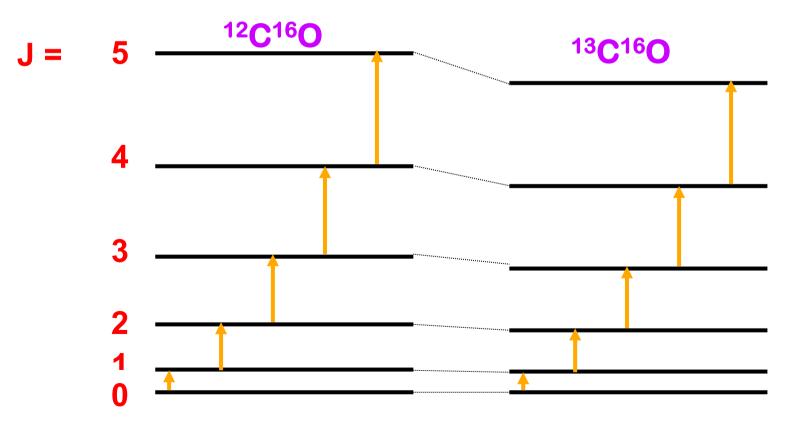
From spectra we can obtain:

bond length or atomic weights and Isotopic Abundances

Effect of Isotope Substitution on Spectra

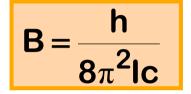


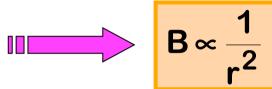
Atomic weight ${}^{12}C = 12.0000$, ${}^{16}O = 15.9994$ ${}^{13}C = 13.0007$,



Non-Rigid Rotor

For a non-rigid rotor the bond-length increases as the angular velocity increases Centrifugal Distortion







B decreases as J increases

Rotational transitions of HF

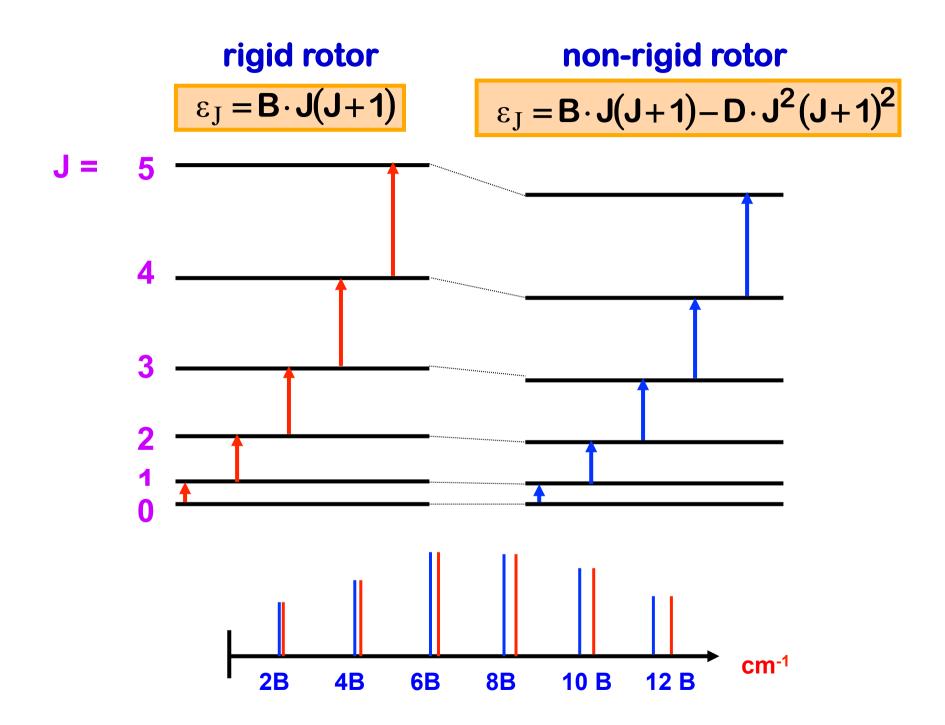
Transition	B _{calo} cm ⁻¹	B _{exp} cm ⁻¹	r, A	
0→1	20.56	20.55	0.929	
1→2	20.56	20.48	0.931	
2→3	20.56	20.43	0.932	
3→4	20.56	20.31	0.935	
4→5	20.56	20.16	0.938	
5→6	20.56	20.04	0.941	
6→7	20.56	19.82	0.946	
7→8	20.56	19.64	0.951	
8→9	20.56	19.45	0.955	
9→10	20.56	19.16	0.963	
10→11	20.56	18.91	0.969	

For a non-rigid rotor

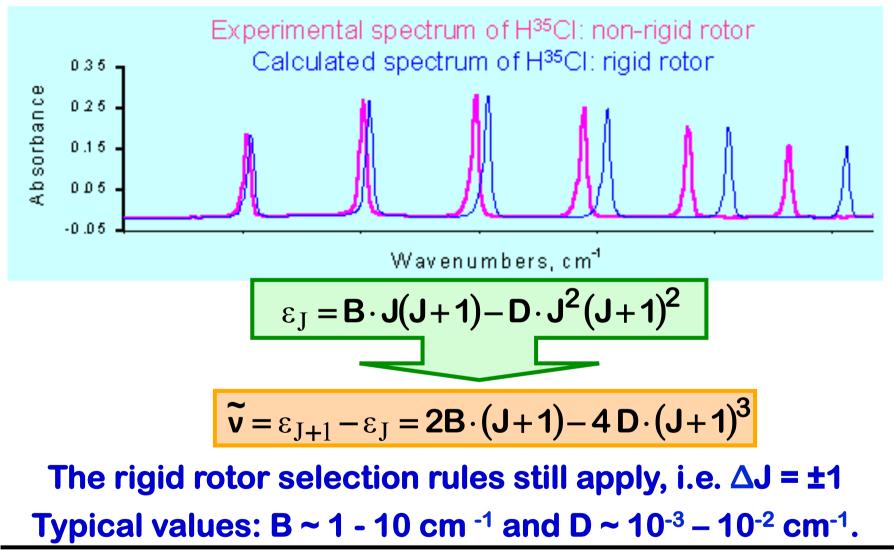
$$\varepsilon_{\rm J} = \mathbf{B} \cdot \mathbf{J} (\mathbf{J} + \mathbf{1}) - \mathbf{D} \cdot \mathbf{J}^2 (\mathbf{J} + \mathbf{1})^2$$

D - Centrifugal Distortion constant (stiffness constant) units: cm⁻¹.

Like B, D depends on the molecule



Non-Rigid Rotor



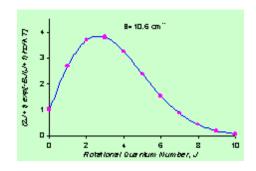
D can be related to the <u>vibrational</u> frequency of the molecule

$$\mathbf{D} = \frac{4\mathbf{B}^3}{\widetilde{v}_{vib}^2}$$

Summary

1. <u>Population of energy levels</u>: Boltzmann Distribution degeneracy of rotational states

- 2. <u>Efect of bond length and mass</u> on rotational constant of diatomic molecule
- 3. Efect of isotopic substitution atomic weights and isotopic abundances
- 4. <u>Non-rigid rotor</u> D - centrifugal distortion constant



	r₀, Å	B, cm ⁻¹		r₀, Å	B, cm ⁻¹
H_2^+	1.06	29.8	F ₂	1.42	0.88
H_2	0.74138	60.8	Cl ₂	1.98	0.24
D_2	0.74154	30.4	Br ₂	2.28	0.081
O ₂	1.21	1.44	HF	0.92	20.9
N_2	1.10	2.00	нсі	1.27	10.6
со	1.13	1.93	HBr	1.41	8.46

